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ABSTRACT

Various forms of logit model have been, employed in the regression analysis of ordinal 

response data. In the first part of the thesis we adapt the theory and methodology of 

generalized estimating equations (GEE) and a binary coding of the ordinal response so 

that the various forms of logit model can be handled in a unified fashion. We develop 

Rao-type generalized score tests for model assessment within this framework.

In the second part of the thesis we propose a class of latent structure models to 

the analysis of longitudinal ordinal data. We assume the observed ordinal scale is a 

manifestation of a latent continuous variable categorized by a set of unknown threshold 

values. The dependence among the repeated measurements for a subject is modeled 

through the latent continuous variable. Monte Carlo E M  (MCEM) is applied to obtain 

the maximum likelihood estimates.

In the third paxt of the thesis we extend the generalized additive models proposed 

by Hastie and Tibshirani (1984) to multivariate data and propose a class of multivariate 

generalized additive models, which model the correlation structure of the components of 

a multivariate observation as well as the marginal means.

In the last part of the thesis we discuss the methods for handling censored data for 

both categorical and continuous responses. We develop E M  algorithms for censored 

data in general, and also develop a weighted least squares algorithm for cumulative link 

models for ordinal responses.
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Chapter 1

Introduction

1.1 Ordinal Response Data

It is widely recognized that the types of data as well as the class of problems that a 

statistician is likely to encounter vary greatly with the field of research. For example, 

the overwhelming proportion of data in the physical sciences is essentially quantitative 

although possibly measured on an arbitrary scale. In the social sciences and biological 

sciences, qualitative data are more common. These qualitative measurements, whether 

subjective or objective, usually take values in a limited set of categories which may be 

on a ordinal or on a purely nominal scale.

Ordinal scales are pervasive in the social sciences, in particular for measuring atti

tudes and opinions on various issues and status of various types. Ordinal scales are also 

commonly occur in such diverse fields as marketing (e.g., ordinal preference scales or 

resource scales) and medical and public health disciplines (e.g., for variables describing 

amount of exposure to a potentially harmful substance, stages of a disease, degree of 

recovery from an illness, and severity of an injury). In all fields ordinal scales often re

sult when discrete measurement is used with inherently continuous variables such as age, 

education, and degree of prejudice.

This thesis is devoted to the statistical analysis and modeling of ordinal response 

data. The methodological and theoretical research summarized here is motivated by our

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

experience with ordinal data in consulting projects and interdisciplinary collaborations 

with scientists. In the remainder of Chapter 1 we provide historical background on 

methods for ordinal data, focusing primarily on regression models for ordinal response 

data, and we provide an overview of the research summarized in this thesis.

1.1.1 Historical Note

There are a variety of models proposed for ordinal data. Many of these may be formu

lated as logit models. Such models describe effects of a set of explanatory variables on a 

response probability through logit transformations. Ordinal logit models are generaliza

tions of logit models for binary responses. To reflect the ordinal nature of the responses, 

different types of logits for ordered response categories, such as cumulative logits, con

tinuation ratio logits, and adjacent category logits, are used to build models. Agresti 

(1990) and Clogg and Shihadeh (1994) discussed these models in detail. Currently cu

mulative logit models appear to be the most popular models in applications. The article 

by McCullagh (1980) is a good one for motivating their use. They have the appealing 

feature of the existence of an underlying continuous and perhaps unobservable random 

variable. Motivation for the continuation logit models is that the results of fitting models 

for separate logits are independent. Thompson (1977) proposed a model having these 

logits for the analysis of discrete survival-time data. He showed that when the lengths 

of the time intervals approach zero, his model converges to Cox’s (1972) proportional 

hazard model for survival data. Models using adjacent category logits are presented by 

Goodman (1983). His models are equivalent to ordinal loglinear models. As generaliza

tions of the proportional odds models, Agresti (1990) described another class models, 

the cumulative link models, which represent the cumulative probabilities of the response 

via a strictly monotone function F~l from (0,1) on the real line. All the models of this 

type share the property that the categories can be thought of as contiguous intervals on 

some continuous scale. They differ in their assumptions concerning the distributions of 

the latent variable. McCullagh (1980) discussed several links, such as logit link, probit 

link, and complementary log-Iog link.

2
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Recently, considerable progress has been made on the methodology for the analysis 

of ordinal longitudinal data. The defining characteristic of a longitudinal study is that 

individuals are measured repeatedly through time, so that statistical inference must rec

ognize the likely correlation structure in the data. A widely used approach for many 

problems is the generalized estimating equations (GEE) method proposed by Liang and 

Zeger (1986) and Prentice (1988). Several authors have adopted the GEE approach to 

proportional odds models for clustered ordinal responses (Clayton (1992), Gang et al. 

(1993), Miiler et al. (1994), Heagerty and Zeger (1996)). Simpson et al. (1996a) devel

oped the methodology for regression analysis of interval censored and clustered ordinal 

data. Another approach is to use random effects models, in which the regression coef

ficients measure the more direct influence of explanatory variables on the responses for 

heterogeneous individuals. This approach has been discussed by Albert and Chib (1993), 

and by Xie, Simpson and Carroll (2000). Modeling the marginal expectation and treat

ing the correlation as a nuisance may be less appropriate when the time course of the 

outcome for each subject is of primary interest or when the correlation itself has scientific 

relevance! Transitional models describe the conditional distribution of present response 

as an explicit function of past responses. Diggle, Liang and Zeger (1996) presented a 

transitional model based on cumulative logits.

Non-parametric models provide a flexible tool for understanding covariate effects. 

They can be used in a data analytic fashion to model and to test hypotheses about co- 

variates. They can also be viewed as diagnostics for identifying functional form. The 

fitted functions can used to inspire parsimonious reparameterization of variables. Gen

eralized additive proportional odds regression was proposed by Hastie and Tibshirani 

(1987 and 1990). Yee and Wild (1996) proposed vector generalized additive models, 

which include proportional odds models as a special case. These are all in the framework 

of the generalized additive models (GAM) introduced by Hastie and Tibshirani (1984 

and 1986).

3
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1.1.2 Regression Models for Ordinal Responses

When, response categories have a natural ordering, models for this kind of data should 

utilize that ordering. There axe different ways we can incorporate the ordering in the 

model. This section introduces different types of regression models for ordered response 

categories.

1.1.2.1 Logit M odels for Ordinal Responses

One way to model response variables having more than two categories is to use gener

alized logit models, which are generalizations of logit models for binary responses. We 

incorporate the ordering directly in the way we construct logits. There are three types 

of logits for ordinal data.

(a) Proportional Odds Models

Let Y  be a ordinal response variable takes value in 0 ,1 ,2 ,.. . ,  S, and or be a vector of 

covariates associated with Y.  The proportional odds models are defined as

logit{Pr(V' > s | x)} =  a3 + x'Q, s = L , . . . ,S .  (1.1)

This model assumes a variable’s effect on the odds of response at or above category s is 

the same for all s. It satisfies

logit{Pr(K > s | xi)} — logit{Pr(K > s | X2 )} =  log
Pr{Y > s x i)Pr(Y  < s x2)
Pr(Y > s x2) P r ( Y < s X i)

=  (xt -  x2yp.

Its interpretation is that the odds of making response > s are exp[(xL — x2)'/?] times 

higher at x =  Xi than at x = x2. Models of the form (1.1) describe strict stochastic 

ordering, i.e. either

P r(Y  > s | xt ) > Pr(Y > s \ x2) for all s

4
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or

Pr(Y > s | x t ) < Pr(Y > s | x2) for all 5

according as (xi — x2)'/3 > 0 or (xt — x2)'/? < 0.

Motivation for this kind of model is provided by an appeal to the existence of an 

underlying continuous and perhaps unobserved random variable.

(b) C ontinuation  R atio  M odels

The continuation ratio models provide an alternative way of constructing logit for 

ordinal response, which have the form

logit{Pr(V' = s | Y  > s,x)} =  as +  x'[3s, 5 = 1 , -----S. (1.2)

The marginal probabilities can be obtained by recursion.

Pr(Y  < 5  | x) =  n O - Pr(Y  =  t | Y' < t, x)}
f=4+t

r r  f L exp(at +  x'Pt) \ 
t i + i l  1 + exp(a t + x//?l)J *

Model (1.2) is often used in the context of survival analysis. We can imagine the 

ordered categories as failure times in increasing order, as noted above, Thompson (1977) 

proposed a model having these logits for the analysis of discrete survival time data, and 

showed that the model converges to Cox’s (1972) proportional hazards model when the 

length of the time intervals approach zero. If we replace the logit link function with the 

complementary log-log link function, the discrete proportional hazard model is obtained 

(see Kalbfleisch and Prentice (1980), Chapter 2).

5
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(c) A djacent C ategory  Odds M odels

Another way to use ordered response categories is by forming logits of adjacent cate

gories. The model is given by

l°g { Pr(Y = s -  1 | *)} =  a * +  X' ^  5 = (L3>

The adjacent category odds model is simply a reparameterized reference category logit 

model.

1.1.2.2 C um ulative Link Models

An equivalent form of the proportional odds models is given by

logit{Pr(V' < s | z)} = a , — x'/3, s = I , . . . ,  S.

This mode! assumes that effects of x are the same for each cutpoint. This assump

tion holds if there is a linear regression for an underlying continuous response having 

standardized logistic distribution, x'fi is the location parameter, and Qt, . . . , a s  is a 

set of outpoints which categorize the underlying continuous response into S  +  I ordered 

categories. A generalization of the proportional odds model is to use other monotone 

transformations. Let F denote the CDF of a continuous random variable having positive 

density over the entire real line. The F~l, so called link function, is a strictly monotone 

function from (0,1) onto the real line. The cumulative link model has the form

F~l{Pr(Y  < s | x)} = a3 — x'(3,

or, equivalently

Pr(Y < s | x) = F{as -  x '0 ,) (1.4)

McCullagh (1980) discussed several cumulative link models. The logit link, F~l(u) =  

Iog[u/(l — «)], gives the proportional odds models. The standard normal CDF F = $

6
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gives the threshold probit models, a generalization of the binary probit model to ordinal 

data. The complementary log-log link, F~l(u) = log[— log(l—u)] is appropriate when the 

underlying distribution follows an exponential or extreme-value distribution. Artchison 

and Silvey (1957), Bock and Jones (1968, Chapter 8), and Gurland et al. (1960) have 

used cumulative probit models. Prentice and Gloeckler (1978) used the complementary 

log-log model to analyze grouped survival data. Farewill (1982) generalized it to allow 

for variation among the sample in the values regarded as category boundaries for the 

underlying scale. Genter and Farewell (1985) introduced a generalized link function that 

permit comparison of fits provided by probit, complementary log-log, and other links.

1.2 Censored D ata

In many situations, some responses we observe may only contain partial information. 

Information for a categorical variable may be known only to fall into a subset of the 

categories instead of the exact category, or information for a continuous variable may be 

only known to lie in an interval of real line. Data of this type are called censored data. 

When referring to the censored data mechanism, we use the terminology of Little and 

Rubin (1987). A censoring process is said to be missing completely at random (MCAR), 

if the censoring is independent of both observed and unobserved data, and missing at 

random (MAR) if conditional on the observed data, the censoring is independent of the 

unobserved data. A process that is neither MCAR nor MAR is called informative.

Previous work on censored categorical data has largely been in the context of survey 

data and partially classified contingency table. Including Hartley (1958), Blumenthal 

(1968), Koch, Imrey, and Reinfurt (1972), Chen and Feinberg (1976), and Shipp, Howe, 

Watson, and Hogg (1991). The methodology for analysis of censored ordinal data has 

been discussed by Simpson et al. (1996), and Xie, Simpson and Carroll (2000). Various 

authors, including Baker and Laird (1988), Chambers and Welsh (1993), and Molen- 

berghs and Goetghebeur (1997), have used the E M  algorithm to maximize the observed 

data likelihood via the complete data likelihood for missing data problems.

7
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For censored continuous variables, the main focus of research is on survival analysis. 

For right censored data, parametric and non-parametric methods are available (Lawless 

1982, Kalbfleisch and Prentice 1980). Interval censoring is another mechanism of censor

ing, which needs special treatment. Turnbull (1976) studied the empirical distribution 

function with arbitrarily grouped, censored and truncated data. Finkelstein (1986) pro

posed a method for fitting the proportional hazard model for interval censored data. 

Odell, Anderson, and D’Agostino (1992) applied a Weibull-based accelerated failure time 

model for interval censored data. Kim (1997) discussed analyzing interval censored failure 

time data using a loglinear model.

1.3 Overview

In Chapter 2, we adapt the theory and methodology of generalized estimating equations 

and a binary coding of the ordinal response so that the various logit models can be 

handled in a unified fashion. This approach is also well suited for alternatives to logit 

models such as ordinal probit analysis. We develop Rao-type generalized score tests for 

model assessment within this framework. Generalized score tests and graphical tools for 

assessing goodness of fit are discussed in the context of two examples.

In Chapter 3, we propose a class of latent structure models for analyzing correlated 

ordinal data. In many situations it is reasonable to assume that the observed ordinal 

scale is a manifestation of a latent continuous variable categorized by a set of unknown 

threshold values. Various correlation structure can be modeled via the underlying con

tinuous random variable. We discuss two special cases, the random effects models and 

the autoregressive model. The Monte Carlo E M  algorithm, with importance sampling, 

is applied to get maximum likelihood estimates.

In Chapter 4, we extend the generalized additive models to include a class of multi

variate regression models. We call the resulting models “multivariate generalized additive 

models” (MGAMs). In addition to modeling the marginal means of multivariate obser

vations through the regression parameters, we are also able to model the correlation

8
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structure of the multivariate observations. The class of models includes the multiple 

logistic regression models for nominal responses and the ordinal regression discussed in 

Section 1. VVe use regression splines to fit non-parametric multivariate regression models.

In Chapter 5, we discuss how to handle censored data. Censoring is defined in general 

for both categorical and continuous responses. VVe develop an E M  algorithm for censored 

categorical data. A weighted least squares algorithm is proposed for a class of cumulative 

link models. An E M  algorithm is developed for right censored, left censored and interval 

censored continuous data.

9
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Chapter 2

Unified ordinal regression analysis 

via generalized estimating equations 

and generalized score tests

2.1 Introduction

Ordinal data are common in social science research and increasingly common in other 

areas such as the biological sciences. There are different strategies for modeling ordinal 

response data. Commonly used models include the proportional odds model (McCullagh 

1980), the adjacent category odds model (see, for example, Clogg and Shihadeh 1994), 

and the continuation-ratios model (see Feinberg 1980 and Agresti 1990). Simpson et al 

(1996) discussed the maximum likelihood estimation and marginal analysis subject to 

interval censoring for these three types of models. Heagerty and Zeger (1996) proposed 

a GEE approach to the analysis of clustered ordinal data using the proportional odds 

model. Maximum likelihood estimations (MLE) are commonly used to get parameter 

estimates, but direct maximization of the likelihood is somewhat complicated when dif

ferent model forms axe used. One of our goals is to develop a unified approach for a broad

10
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class of ordinal regression models. We anticipate that the approach taken here will also 

facilitate the analysis of correlated ordinal data.

Begg and Gray (1984) studied the technique of individualized logistic regression for 

calculating polychotomous logistic regression parameters. They fit separate logistic re

gressions to binary indicators for the different response categories. In a simulation study 

they found that the resulting estimators have reasonably high efficiency in comparison 

with maximum likelihood. Ordinal models usually impose constraints on the parameters. 

For example, the proportional odds model assumes the same slopes across all response 

levels. For ordinal data, all the models mentioned above can be viewed as a set of logistic 

regressions at different levels. Each ordinal response contributes to these logistic regres

sions according to its observed value and the model form, which can be represented by 

two vectors of binary indicator variables, respectively. Clayton (1992) discussed fitting 

these logistic regressions simultaneously for the proportional odds model.

We propose a general class of models for ordinal response data, of which the different 

logit models mentioned above are all special cases. The general formulation is based 

on modeling a set of unconditional or conditional probabilities of the response at dif

ferent levels. For obtaining the parameter estimates, we consider simultaneous logistic 

regression (SLR), an extension of individualized logistic regression that allows consistent 

estimation of the parameters and provides valid large sample inferences. This method can 

be easily applied to different models using standard logistic regression software. Another 

advantage is that one can enforce linear constraints on the parameters conveniently by 

forming the corresponding design matrix. For example, one can use this method to fit 

proportional odds model, partial proportional odds model (Peterson and Harrell 1990), 

and unrestricted models in a unified fashion. It is clear that the collection of indicator 

variables generated from a given ordinal response are correlated with each other. In order 

to perform valid inferences these correlated binary response variables can be treated as 

if they are clustered in a generalized estimating equation analysis.

We also consider efficient logistic regression (ELR), a further refinement, in which 

we incorporate the correlations between the indicator variables that code the ordinal

11
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response. This is an adaptation of the efficient GEE estimation of Liang and Zeger 

(1986). We establish equivalence results of the ELR with MLE in special cases, and 

conjecture that this equivalence holds for a broad class of uncensored ordinal regression 

models.

Another advantage of the SLR and ELR approaches is that they lend themselves to 

the development of generalized score tests for composite hypotheses about the model. 

Like the efficient score tests proposed by Rao (1947), generalized score tests require only 

the nuil parameter estimates, and they are invariant to full-rank differentiable transfor

mations of the parameters. Boos (1992) developed generalized score tests in the context 

of GEE.

The SLR and ELR approaches are developed in Sections 2.2 and 2.3. Section 2.2 de

scribes the coding of the ordinal response into a collection of indicator variables. Section

2.3 develops marginal models and unbiased estimating equations for the binary coded 

ordinal regression models. Section 2.4 evaluates the asymptotic relative efficiencies of 

the parameter estimates using both approaches. In Section 2.5 we introduce generalized 

score tests for SLR and ELR. These score tests can be applied to test proportionality 

in proportional odds models and other hypotheses about the model. Finally, we present 

two examples to illustrate our methodology. Different ordinal regression models are con

sidered to analyze the two datasets.

2.2 Binary Coding of Ordinal Responses

Ordinal regression models are designed to model the probability distribution of the or

dinal score, Y), as a function of covariate information represented by a vector, x,-. We 

assume without loss of generality that Yi takes values in {0,1,2, . . . ,5 } .  It is sufficient 

to model the probabilities for {1 ,2 ,... ,5}, because the probability of 0 is obtained by 

subtraction. We consider the following general class of models:

Pr(Yi e  Ts | Yt e  As) = H ( a s + x jp s), s =  1 ,2 , . . . ,S;

12
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where .4, is the active sef, Ts is the target set, H  is a cumulative distribution function, 

and it is assumed that Ts C -4S. This class of models includes well-known forms such as 

the proportional odds model, ordinal threshold probit regression, adjacent category logit 

regression, and ordinal regression based on continuation ratios.

In this general framework we introduce binary codings of the events (Vi E .4S) and 

(V; E T3). This binary coding facilitates a unified approach to parameter estimation and 

inference. Assume that Y  =  (Vi,. . . ,  Yn)r  represents a vector of ordinal measurements for 

n cases, Vj represents the iik observation of Y, taking on the values s =  0 ,1,. . . .  5 > L. 

VVe represent Vj by two vectors of binary indicator variables Vj* =  (Vjf,. . . ,  Vjs)T and 

W '  =  (IVTj,. . . ,  W*S)T. We use Vj* to specify the contribution of Y] in the logistic 

regression at level s, and W*s to specify whether we would include Vj* in the regression 

at level s. The values of the indicator variables of an ordinal response are determined by 

its observed value and the model form. Let x,- denote the covariate associated with Vj. 

Denote by 0 the vector of all unknown parameters. Three examples are used to illustrate 

this coding method.

The proportional odds model, developed by McCullagh (1980), assumes parallel ef

fects for different levels. In the proportional odds models for the marginal means, it is 

assumed that

logit{Pr(Vj >  s ) }  =  a, +  xf /3,  s =  I , . . . ,5 .

We can naturally represent the ordinal measure Vj through a vector of cumulative indi

cator variables

f i if v; > s
Vj* =  < -  and W? =  1, 5 =  1 , . . . ,5 ,

[  0 i f Yi < s

An alternative to the proportion odds model, which can model nonparallel effects, is 

the continuation ratio model given by

Iogit{Pr(Vj =  s | Vj <  s)} =  a 5 +  x f f t .

13
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If we were to perform an individual logistic regression at level s, we would consider all 

the responses whose scores are less than or equal to s. This is the active set at level s. 

So for \ \  at level s, there are three possible outcomes: being I or 0 in the s th active set, 

or excluded from the sth “active” set. So we can defined the indicator variables of Yt by

Y* =* 13
1 if Yi =  s 

0 otherwise
and W* =

1 if Yi < s

0 otherwise s =  l , . . . , 5 .

Another possibility is to model the adjacent category odds in the log-linear model 

(see Clogg and Shihadeh (1994)).

1o4 / m k  = 7 - i ) } = a ‘ + x f l 3 "

This model is parametrically equivalent, that is a, = a s and (3, =  f3„ to the conditional 

model

logit {Pr(Vj =  s | s - l < Y j < . s ) }  = dJ + xj(3s.

since logit{Pr(Yj =  s | s — I < Yi < s)} =  log{Pr(V; =  s)/Pr(Vj = s — I)}. Similar to 

the continuation ratio model, we can form the “active” set at each level, and define the 

indicator variables as

YZ=<
I i f  Y i = s  

0 otherwise
and WfB =

I if Vj =  s or Y} =  s — I 

0 otherwise s = l , . . . , 5 .

We illustrate the binary coding for all three forms in the case where the response 

takes on the four possible values s =  0,1,2,3. Table 2.1 lists the values of the indicator 

variables for all the possible responses for the three types of logit models.

The three types of models described above can be treated in a unified fashion by 

specifying the conditional link function model: E(Y* \ =  1) = H{a3 + xj{33). We

make the convention that W*a =  0 implies Y*a =  0, i.e., the binary response is defined to 

be zero outside of the active set. We then have the full specification of the conditional

14
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model,

pr, ■■= fi(V2 1  wt.) = + *10,)■ (2 . 1)

It is convenient to express (2.1) as

pr = w in ( m , (2 .2 )

where P? =  (P-j,. . . ,  P£)r , W f =  diag(M^l t . . . ,  W&),

X / =
/  \  e2 — es

 ̂ ® Xi e2 ®Xi es ® x,- y
with ej =

' o '

V0 /
5x1

position,

and 9 =  (a l,....Q '5 ,^ ll,. . . ,/5 ip, . . . , i(?51, . . . , iJ5p,)r . A common modeling assumption 

is that the slope parameters for the explanatory variables are constant across severity 

levels. Under this parallel slopes assumption, e.g., in the proportional odds model, the 

pseudo-design matrix has the simplified form,

/
xf =

et e2 • • • es

X  i  * ’ * X j

Observe that the S  binary responses generated by observation i appear as if they were 

separate responses in a binary regression with augmented design matrix. In performing 

inferences we adjust for their correlation using GEE theory as described by Diggle et al. 

(1994, Chapter 8). The marginal model corresponding to (2.1) is given by

(2.3)

15
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Table 2.1: Indicator variables for ordinal responses

Proportional odds Continuation ratio Adjacent category 
model model odds model

v; Y* Y*i2 V*t3 Y*r n V'*r t2 Y*i3 y*r »i V'*i2 vs
0 0 0 0 0 0 0 0 0 0
i L 0 0 1 0 0 I 0 0
2 1 I 0 0 1 0 0 1 0
3 1 1 1 0 0 1 0 0 1
Yi W?iL Wn w*vvi3 Wh WZ WZ w -2 M'S
0 L 1 1 1 L I I 0 0
I 1 I 1 L 1 1 I I 0
2 I I I 0 1 1 0 1 1
3 1 I I 0 0 I 0 0 1

In a fully parametric approach, the term E{W*3) may have a complicated dependence on 

on the parameters. In the development that follows we avoid this complication through 

the use of conditionally unbiased estimating equations.

2.3 SLR and ELR Estim ation

To derive conditionally unbiased estimating equations we start with (2.1) and observe 

that

[V SIW a- Bernoulli/* ) , (2.4)

where P*s = W'3'H(a, + xJ[3). If =  0, then, by definition Y{* =  0 as well, so that (2.4)

holds trivially. Defining 0 * log(0) =  0 through the usual limiting argument, we have the

marginal pseudo-log-likelihood:

i ; i ; v 2 i o g ( / s ) + ( i - v s ) i o g ( i - f S ) .  (2 .5 )
1=1 4=1

16
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Now W*aY£ =  V'*. Moreover, if W*s =  0, then P* =  0 and log(l — P*3) =  0. Therefore, 

the criterion in (2.5) is equal to the weighted logistic regression criterion,

E  E  »r, {v;; b g (« „ ) +  (i -  v;*> iog(i -  H u )} , (2 .6 )
1=1 5 = 1

where His =  + xJ0)- The criterion in (2.6) corresponds to the estimating equation

Y 'X f W i i Y i  - n X i O ) }  =  0. (2.7)
;=i

where V* =  (V'T. . . ,  V;s)r , and where X,-, W , and 6 have the same form as in equation 

(2.2). Equation (2.1) implies that (2.7) is a conditionally unbiased, and hence marginally 

unbiased, estimating equation. For further discussion of conditional versus marginal 

unbiased estimating equations see Kunsch, Stefanski and Carroll (1989).

Because the weights are 0-1 valued, the maximizer of (2.6) can be computed by ordi

nary logistic regression of the binary responses in the active set. We refer to the resulting 

estimates as the simultaneous logistic regression (SLR) estimates. At each level s, model 

(2.7) can be viewed as a logistic regression on the “active” set at level s. Simultane

ously fitting logistic regression using SLR allows for pooling information. Simpson et

al. (1996) introduced the proportional odds version of SLR, referring to the method as 

“pseudo-strata.” They used the pseudo-strata estimates as starting values for maximum 

likelihood, but did not discuss the possibility of basing inferences on them. The condi

tional odds version of SLR is in fact equivalent to maximum likelihood estimation. A 

number of authors have used this fact about continuation ratios to simplify the compu

tations for that special case; see, e.g., Agresti (1990, page 319).

The SLR estimation produces consistent, asymptotically normal estimates, as can 

be shown by adapting results of Liang and Zeger (1986). Except for the special case 

of the conditional odds model, the inverse of the pseudo-information matrix will give 

inconsistent estimates of the asymptotic variance of the parameter estimates. The theory 

of estimating equations provides a consistent estimator for the asymptotic covariance of

17
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ce and $, namely, the sandwich estimator,

vars,r(d,/3) =  H i i & J r ' H i i & J W & J ) - 1 (2.8)

where

WJAiWfX,-,
i=l

H ^ & J )  = ' £ X [ W f ( Y , '  -  WiKK* -  Wi)r W *X ,,
1=1

Hi =  CH(ai + /J [ ii) ,..., 'H (Q s  + /?Jx,))T, and A, =  diag{%'(ai + xf/3 l) , . . . ,H /(a5 + 

xf/is)}. For background and further references on estimating equations see Diggle. Liang 

and Zeger (1994).

Computationally, one can simply exclude the inactive indicator variables and use a 

standard logistic regression procedure on the active indicator variables. The SLR method 

is easy to implement and, as will be seen, it can be highly efficient. Inferences based on 

SLR provide a fast method for model selection. Furthermore, SLR can provide good 

starting values for the more efficient ELR approach, described below, and for maximum 

likelihood estimation.

More efficient estimates can be obtained by including the covariance in the ELR 

approach. Liang and Zeger (1986), Zeger and Liang (1986) have developed moment- 

based GEE methods for regression models for longitudinal categorical responses, where 

the repeated measurements on the same individual are correlated. Similarly, we can 

treat the indicator variables obtained from one observation as from one cluster, and 

consider the correlations among them. In the present case we can work out the exact 

covariance functions for the coded response variables. Under certain conditions, the 

ELR approach produces consistent estimators of the regression parameters, under only 

the correct specification of the form of the marginal mean function. The ELR for a  and 

/? solve the estimating equation

£  XfW*A,-VTlW*(V? -  Hi) =  0, (2.9)
£=l

18
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where V{ = E{W*{Yf — Hi)(Y* — 'H,-)r W*]. Because the assumed covariance is correct 

under the model, the variance of a and /3 is consistently estimated by

varllr(d,/3) =  (f^ X fW 'A K -'A .W JX ,)-1. (2.10)
1=1

For the three model types mentioned previously V] has elements uIat (s. t G {1.___ 51}),

where

Proportional odds : vut = Hia{l — Hit), if -s >  £;

„  . . . ifs  =  f;Continuation ratio : V{at =  {
0, if 5 ^ ;

Adjacent odds : u,sf =

*i3{His +  (1 -  H i s )2}. if s =  t:

—7ris ( l  — H i s ) H i ' S + i ,  if t = s +  I;

. 0. if £ > s +  I;

where i t , ,  =  n>=t Hij{ 1 +  Ey=i ni=i Hik}~1 and vita =  v i3 t .

Consistency of the ELR method is an open question in general because of the double 

occurrence of the stochastic weight matrix W* in (2.9). This could possibly bias the 

estimating equation if the matrix has nonzero off-diagonal terms. If the latter

matrix is diagonal, then unbiasedness of the estimating equation follows from relation 

(2.1) because (W *a)2 =  W*a. In particular, the ELR estimating equation is unbiased for 

the proportional odds model and for the continuation ratio model.

2.4 A sym ptotic Relative Efficiencies o f SLR and ELR

Here we address the issue of asymptotic efficiencies of the SLR and ELR estimates. The 

efficiencies are generally high for the SLR method, and both methods yield fully efficient 

estimates for special cases.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Table 2.2: ARE of simultaneous logistic method for proportional odds model

Design A A an a  2 013 £*4 <*5 Ot 6 ot7 or8 «9

CO 0.97 0.99 0.98 0.98
(H ) 0.93 0.96 0.96 0.95 0.95 0.96 0.96
(iii) 0.92 0.95 0.95 0.94 0.94 0.94 0.94 0.94 0.95 0.95 0.95

2.4.1 Proportional Odds Models

In general, it is difficult to compare the efficiency of SLR estimates to MLE analytically, 

so we consider 2x2 cross-sectional design configurations with different number of response 

levels. Here xn and x ;2 axe the dichotomous covariates indicating group membership for 

the ith individual. The parameters are 0i = I, l3o = 2; and three designs with 3, 6. and 

10 response levels are selected:

(i) au =  0 ;a2 =  -2 ;

(ii) Qi =  0:o!2 =  —0.5;a3 =  — l ; a 4 =  — l.5 ;a5 = —2;

(iii) Qi = 0;q2 = —0.25;a 3 =  —.5;a.j =  — .75;as = —I;a6 = —1.25;a? =  —1.5; 

o;g =  —1.75; Qg = —2;

The efficiencies were calculated in Mathematica. We assume balance in all designs, 

that is each of the four combinations occurs with probability 0.25. Table 2.2 lists the 

asymptotic relative efficiencies for the three designs. It shows that the asymptotic effi

ciencies are high, the minimum efficiency is 92%.

The log-likelihood of the indicator variables, Y* =  {V^;,. . . ,  V'5 }, can be written as

/(>?) =  (1 "  YTi) log(l - P a )  + (Va "  VS) log(P*t -  Pt2) 

+  * • * +  (* £ -i -  Yik) M Pts-i ~ Pts) +  VS log(P*5).

which follows an exponential family distribution. By the theory of generalized lineax 

models, the ELR estimation is equivalent to MLE for the proportional odds models.

20
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T able 2.3: ARE of simultaneous logistic method for adjacent category odds model

Design 0 i 02 a  i a2 <*3 a 4 <*5 as a 7 «9
(i) 0.99 0.98 0.99 0.99
(ii) 0.96 0.88 0.9S 0.95 0.95 0.98 0.96
(iii) 0.92 0.79 0.99 0.98 0.96 0.96 0.96 0.94 0.94 0.97 0.92

2.4.2 Continuation Ratio Models

For the continuation ratio model. We first consider the multinomial representation. Let 

n3,s  =  0 ,1 ,. . . .  S  denote the response count in each ceil and let n =  J2s=o ns- Define by

qs = Pr(Y  = s j Y < s). The multinomial mass function has factorization

b(n,ns,qs) b(n -  ns , nS- i ,  qs-i) ■ ■ • b(n -  ns -----n2, <? i ) *

where b(n.y,q) denote the binomial probability of y “successes” in n trials, when the

success probability is q on each trial (see Agresti 1990, page 319). So the log-likelihood 

function is

‘ = £ E » 7 , r e  log (pt.)+ (i -  m  iog(i -  p‘ )}.
i=L j»= 1

which is the same as (2.6). Therefore the SLR is equivalent to MLE (and ELR) for the 

continuation ratio models, and it is asymptotically efficient.

2.4.3 Adjacent Category Odds Models

Using the same design configurations above, we compare the asymptotic relative efficiency 

of SLR to MLE. The results are listed in Table 2.3 In our examples, we have attempted 

to assess the influence of the number of categories. In general, the asymptotic relative 

efficiencies axe high throughout, although occasionally SLR is inefficient for individual 

parameters. Because SLR treats each binary response sepaxately in the estimation phase 

rather than borrowing strength from the correlations between binary responses, certain 

configurations of response probabilities my lower Its efficiency. In particular, the low 

efficiency for estimating j32 in Design (iii) appears to be due to extreme probabilities for
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inclusion in group 2. Table 2.3 also suggests a decrease in efficiency as the number of 

response levels increase.

2.5 Goodness of Fit and Score Tests

Rao (1948) introduced score statistics having the form

S(d)Tr ls(e)  (2. 11)

where S{9) is the vector of partial derivatives of the log likelihood function. 0 is the vector 

of restricted maximum likelihood estimates under H q , and I is the Fisher information 

of the sample evaluated at 0. These test statistics are attractive because they only 

require computation of the null estimates 0 and are asymptotically equivalent to Wald 

and likelihood ratio statistics under both null and Pitman alternative hypotheses (Serfling 

1980. pape!56). The generalizations of Rao’s score tests has been discussed by Boos 

(1992) in the general estimating equations situation, and by White (1982) in the context 

of model misspecification. These generalizations are able to account for lack of knowledge 

about the correlation structure by using semiparametric variance estimates. The same 

ideas may be adapted to score testing, as described by Boos (1992). Advantages of the 

Rao-type score test in comparison with the Wald-type parameter estimates test, include 

invariance to nonlinear transformations of parameters and estimation for the reduced 

model only. Generalized score tests can be developed for the SLR approach and the ELR 

approach to assess goodness of fit of the different ordinal regression models.

In the test for parallelism we consider model (1) as the full model, and we test the 

hypothesis H q : g{9) =  0, where g : BP —> Rr is a continuous vector function of 9 

such that its Jacobian at 9, G(0) = dg(9)/d9, is finite with full row rank r, against the 

alternative Hi : g(9) ^  0.

Let 9 solve the constrained maximization problem

maX8sqQ(9) subject to g(9) =  0,
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and let
3Q(0)S(9) =

de

With the SLR approach, Q{9) is given by (2.6), and 5(0) is given by (2.7) with unre

stricted parameters. We need to solve (2.7) subject to g(9) = 0 to get 0. the restricted 

parameter estimates. The estimates 0 which maximizes Q{9) subject to Ho satisfies

S{B )-G (0)t X = Q, <7(0) = 0 ,

where A is an r  x 1 vector of Lagrange multipliers. This form is general but may not 

be easy to implement using existing software. For some special cases this can be accom

plished by changing the design matrix to simplify the computation of restricted parameter 

estimates. For instance, for testing parallelism discussed before, the restricted parame

terization is that (3i =  ,82 =  * • • = 0s- The parameter estimation for the restricted model 

is simplified by using the design matrix assuming common slope parameter. The score 

test statistic is as follows

S 3ir =  S { 9 )T H i { 9 ) ~ l G { 9 )T [G(9 ) H i { 9 ) ~ 1 H 2(9 ) H i ( 9 ) ~ l G { 9 )T] ~ l G { 9 ) H i { 9 ) ~ 1 S { 9 ).

(2 . 12)

Under H q and suitable regularity conditions, S3ir —► As for the ELR approach for

the proportional odds model, the score test statistic has the form

5 .,r =  S(e)Tr l(0) - ‘s (  S). (2.i3)

Under Hq and suitable regularity conditions, Seir —>■ Xr- The SLR approach and its 

generalized score test provide a very flexible and simple way of modeling ordinal response 

data and checking for lack of fit.
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As an application, we can use generalized score tests to assess proportionality in 

proportional odds models and parallelism of slope parameters in other models. Consider 

the general model without making the parallel line assumption P* =  W i'H{Xi9) where

0 =  ......... ,(3pi , . . .  ,(3ps)T- Under the null hypothesis H0 : fikl =

3k2 =■•■• = Pks, k = 1,• • - ,p, there is a single common slope parameter for each 

of the p explanatory variables. Let f3p be the common slope parameters under

H0. Let d t , . . . ,  as, and 0 i , . . .  ,(3P be the estimated parameters under Hq. So the score 

statistics S3ir and Seir each have an asymptotic chi-square distribution with p{S — L) 

degree of freedom. The score tests can also be used as model selection statistics for 

testing individual variables not in the model. We have implemented the procedures of 

estimation and testing in S-plus (MathSoft, Inc.). Two examples are discussed in the 

following section to illustrate the methodology.

2.6 Examples

Example 1. Analysis of Mental Health Data

To illustrate the methodology, we first consider data from Srole et al. (1962) on the 
relationship between an individual’s mental health status and the socioeconomic status of 
his or her parents. The data are displayed in Table 2.4. The probability bar plot in Figure 
2.1 shows a decreasing trend of mental health as the socioeconomic status goes down. 
It is not immediately clear which model is likely to provide a better description of these 
data. We therefore examine the empirical logit transformations using different logits. We 
plot the empirical logits versus the response levels. This technique is simple and often 
useful for choosing the parsimonious model fcrm. Figure 2.2 shows the empirical logit 
transformation plots for the three types of logits. Each curve connects the transformed 
empirical logits of contiguous levels for each socioeconomic group. None of the logit 
transformation plots deviate greatly from parallelism. So we fit all the three models with 
common slopes parameters cross levels and compute the score statistics for testing the 
parallelism assumption.

The 10 degree of freedom score tests of parallel slopes for the proportional odds model 
using both the ELR and SLR are Se[r =  7.78, pe[r =  0.65, and S,ir =  7.89, p3ir =  0.64.
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a
 Impaired 

Moderate 
Mild 
Well

A(hlgh) B C D E F(low)

Figure 2.1: Bax plot of mental health data

The score test of parallel slopes for the continuation ratio model is S  = 6.89, p = 0.74. 
And the score test of parallel slopes for the adjacent category odds model is 5  =  5.41, p = 
0.86. Table 2.4 gives the fitted counts using the three models. VVe also use the bar plot of 
observed cell counts versus fitted cell counts as a diagnostic tool for checking individual 
fit. Parameter estimates and their standard errors axe displayed in Table 2.5.

For further simplification, we assign scores to the six socioeconomic status levels, 
which A =  5, B =  4, C =  3, D — 2, E =  1, and F =  0, and fit the three models 
with common slopes at different levels. The 14 degree of freedom score tests for the 
proportional odds model, the continuation ratio model, and the adjacent category odds 
model axe 7.91, 6.88, and 5.41 respectively. The fitted values axe given in Table 2.6. All 
the three simple models are appropriate for mental health data.
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Table 2.4: Data on mental health status

Parent’s
Socioeconomic

Status

Mental Health Status

Well

Mild
Symptom
Formation

Moderate
Symptom
Formation Impaired

A(high)
64

(60.5)“ (60.5)6 
(62.7)c (59.2)*

94
(102.5) (102.5) 
(99.0) (103.2)

58
(51.6) (51.5) 
(50.5) (51.6)

46
(47.4) (47.6) 
(49.9) (45.2)

B
57

(57.6) (57.3) 
(58.5) (57.6)

94
(96.2) (96.0) 
(92.6) (96.4)

54
(47.7) (47.8) 
(47.2) (48.4)

40
(43.5) (43.9) 
(46.7) (42.6)

C
57

(56.2) (56.3) 
(56.8) (56.9)

105
(107.9) (107.8) 
(106.7) (107.8)

65
(61.4) (61.4) 
(60.7) (61.3)

60
(61.4) (61.6) 
(62.8) (61.0)

D
72

(69.4) (69.9) 
(70.8) (69.9)

141
(140.9) (140.9) 
(141.4) (140.3)

77
(85.0) (84.7) 
(83.8) (84.5)

94
(88.7) (88.5) 
(88.0) (89.3)

E
36

(38.3) (38.6) 
(36.8) (37.4)

97
(89.1) (89.3) 
(92.3) (88.1)

54
(62.9) (62.6)
(63.9) (62.3)

78
(74.7) (74.5) 
(72.0) (77.2)

F{low)
21

(25.0) (25.1) 
(21.7) (24.4)

71
(65.4) (65.5) 
(68.8) (65.5)

54
(53.4) (53.2) 
(56.8) (52.7)

71
(73.3) (73.2) 
(69.7) (74.5)

“Fitted values wit i the proportional odds model using SLR method
6 Fitted values with the proportional odds model using ELE method 
c Fitted values with the continuation ratio model using SLR method 
^Fitted values with the adjacent category odds model using SLR method

Table 2.5: Parameter Estimates and Standard Errors for Mental Health Data

a2 <*3 f t 02 03 04 05
ELR 2.033 0.333 -0.676 -0.830 -0.847 -0.622 -0.530 -0.263

Proportional (0.133) (0.124) (0.125) (0.166) (0.168) (0.162) (0.153) (0.165)
odds model SLR 2.040 0.338 -0.673 -0.836 -0.861 -0.628 -0.529 -0.262

(0.132) (0.124) (0.125) (0.168) (0.169) (0.163) (0.154) (0.166)
Continuation SLR 1.156 -0.465 -0.748 -0.699 -0.698 -0.525 -0.465 -0.237
ratio model (0.122) (0.113) (0.108) (0.137) (0.138) (0.134) (0.136) (0.136)
Adjacent category SLR 0.988 -0.216 0.345 -0.477 -0.473 -0.349 -0.291 -0.130
odds model (0.130) (0.123) (0.125) (0.152) (0.154) (0.148) (0.140) (0.151)
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Figure 2.2: Empirical logit transformation plot of mental health data

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Obs:
PO.ELR:
CP.SLR:

Afliigh)

■■■■■

cm mo* sea* cpaw k m cm aonn "QM cpa* *ca* cm (Q.BJ* «5«m cPaf* *ca*

Fflow)

■■■■I

cm poom *oaj« c? a* *cap cm poait «oa* cpan *ca* om «aoj« *oa* cpa* «ctn

Observed counts
Proportional odds model with ELR PO.SLR: Proportional odds model with SLR 
Continuation ratio model with SLR AD.SLR: Adjacent category odds model

Figure 2.3: Observed values vs. Fitted values
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Table 2.6: Fitted values with continuous scores on socioeconomic status

Parent’s
Socioeconomic

Status

Mental Health Status

Well

Mild
Symptom
Formation

Moderate
Symptom
Formation Impaired

5
64

(66.1)“ (65.9)6 
(68.9)c (66.7)rf

94
(104.0) (103.7)
(99.0) (104.8)

58
(48.8) (48.9)
(47.8) (49.5)

46
(43.1) (43.5) 
(46.3) (41.0)

4
57

(54.3) (54.3) 
(55.9) (55.0)

94
(95.0) (94.8) 
(92.2) (95.2)

54
(49.3) (49.3)
(48.4) (49.5)

40
(46.4) (46.6)
(48.5) (45.3)

3
57

(55.6) (55.7) 
(56.3) (56.2)

105
(107.5) (107.3)
(106.5) (107.3)

65
(61.6) (61.6) 
(61.0) (61.5)

60
(62.2) (62.4)
(63.3) (61.9)

2
72

(64.8) (65.0)
(63.9) (65.0)

141
(137.4) (137.2) 
(138.8) (136.7)

77
(87.0) (86.9) 
(87.2) (86.4)

94
(94.8) (94.9) 
(94.1) (95.8)

1
36

(38.7) (39.0) 
(37.1) (38.4)

97
(89.5) (89.5) 
(92.3) (89.0)

54
(62.6) (62.4) 
(63.8) (61.9)

78
(74.1) (74.1) 
(71.9) (75.7)

0
21

(27.4) (27.6) 
(25.2) (26.6)

71
(68.5) (68.6) 
(71.9) (68.0)

54
(52.7) (52.6) 
(55.0) (52.2)

71
(68.4) (68.2) 
(64.9) (70.3)

“Fitted values wit i  the proportional odds model using SLR method
6 Fitted values with the proportional odds model using ELR method 
cFitted values with the continuation ratio model using SLR method 
^Fitted values with the adjacent category odds model using SLR method
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T able 2.7: Experimental results for chicken embryos exposed to arboviruses

Inoculum titre Number Number Number of Total number
Virus (PFU/egg) not deformed deformed deaths of eggs

Control 0 17 0 1 IS
Tinaroo 3 18 0 1 19

20 17 0 2 19
2400 2 9 4 15

88000 0 10 9 19
Facey’s 3 13 1 3 17
Paddock 18 14 i 4 19

30 9 2 S 19
90 2 1 L7 20

Exam ple 2. Analysis of Chicken Em bryo D ata

As a second example. Table 2.7 lists a subset of data from Jarrett, Morgan, and 
Liovv (1981). The data were also given in Morgan (1992. page 10, Table L.7). The 
objective was to investigate the effects of arboviruses injected into chicken embryos and 
to quantify the potency of arboviruses. In the experiments, eggs were inoculated with 
a range of viruses and several inoculation levels and candled daily for 14 days to check 
viability. The surviving embryos were then examined for gross abnormalities and the 
results were reported 4 days later; see Jarrett et al. (1981) and McPhee et al. (1984) for 
more detail. The resulting data for the control group and two arboviruses, the Facey’s 
Paddock virus and the Tinaroo virus, are listed in Table 2.7. There are three levels of 
possible responses - death, alive but deformed, and alive but not deformed. The need to 
examine the dependence of the responses on the amount of injected viruses leads to an 
ordinal regression analysis.

The conventional approach is to model the exposure data together with the control 
data using a proportional odds model. Morgan (1992) suggested using logio-transformed 
doses to improve the fitting and eliminate the huge influences of the laxge doses lev
els. However, for the Tinaroo and control data, with the logio-scaled dose entering the 
conventional proportional odds model, the control response rates at both deformed and 
death severities should be zero. This contradict the fact that there is one observed death 
in the controls. In order to use the proportional odds model, McPhee et al. (1984) and 
Morgan (1992) argue that the observed control death rate (1/18) was small and was 
therefore ignored, i.e., they omitted the control observations. However, as indicated by
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Table 2.8: Model fitting results for chicken embryo data

Score Degrees of
Model used Data set statistics freedom p-value

Proportional odds Tinaroo and control 13.3 7 0.065
Paddock and control 1.3 7 0.9S

All data 79.9 10 5.3 x lO"13
Continuation ratio Tinaroo and control 1.6 7 0.97

Paddock and control 6.9 I 0.44
All data 3.8 10 0.95

Adjacent category odds Tinaroo and control 30.6 7 7.4 x 10"3
Paddock and control 9.1 7 0.25

All data 20.5 10 0.024

Morgan (1992, page 120), the proportional odds model does not fit the data. Xie and 
Simpson (1999) pointed out that ignoring low incidence rates at high severity levels may 
lead to the failure of the model. They used a ordinal regression model with nonzero 
control response probability on the chicken embryo data.

We first model the exposure data and the control data for each virus separately. 
The models we used are the proportional odds model, the continuation ratio model, 
and adjacent category odds model. We use the score statistics with the SLR approach 
described in section 5 for testing goodness of fit. The results are listed in Table 2.S. The
proportional odds model and adjacent category odds model do not fit the Tinaroo and
control data, whereas the continuation ratio model works well. For the Facey’s Paddock 
and control data, all the three models work.

Since both experiments share the same control data, it is appropriate to analyze the 
entire data set (two viruses and control). We fit a model with three sets of parameters: a 
set of spontaneous baseline parameters, and two sets of virus-specific intercept and slope 
parameters. In Table 2.8, the last three rows summarize the fitted models. For each of 
the three model forms, the full model can be expressed as follows:

E ( Y *s I W u  ~  !) =  ^{<**0 +  aaixtl +  as2x,-2 +  Ax,id,- +  Ax,-2d,-), s =  1,2;

where
{1, Tinaroo; f 1, Facey’s Paddock;

x,2 =  <

0, Otherwise; 10, Otherwise;
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Table 2.9: Fitted values for chicken embryos data

Virus
Inoculum titre 

(PFU/egg)
Number 

not deformed
Number

deformed
Number of 

deaths
Total number 

of eggs
Control 0 17 0 I 18

(16.15) (0.46) (1.38)
Tinaroo 3 18 0 1 19

(17.05) (1.71) (0.24)
20 17 0 2 19

(15.48) (3.05) (0.47)
2400 2 9 4 15

(5.43) (7.36) (2.06)
88000 0 10 9 19

(1.58) (9.29) (8.12)
Facey's 3 13 i 3 17
Paddock (14.34) (0.60) (2.06)

18 14 I 4 19
(10.45) (1.75) (6.80)

30 9 2 8 19
(8.09) (2.11) (8.81)

90 2 I 17 20
(3.64) (2.48) (13.88)

and di is log(dose +  1) for the z'th observation. We use the log(dose + I) transformation 
to allow non-zero deformed and death rates for the control group. The score test results 
show that, assuming parallel slopes across severity categories, only the continuation ratio 
model works for the entire data set. The fitted cell counts axe listed in Table 2.9.

2.7 D iscussion

In this chapter we have described a unified form for different logit models of ordinal 
responses. This general formulation provides a very flexible way of modeling ordinal 
response data. The binary coding method for ordinal responses is not only useful in the 
context of fitting the unified ordinal models, but also in fitting other ordinal regression 
models such as the latent structure ordinal models (Chapter 3) and nonparametric ordinal 
regression models (Chapter 4), and in dealing with censored ordinal data (Chapter 5). 
The methods we propose avoid the need to develop different model-fitting procedures
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for different logit models. The simulation study shows that the efficiencies of the SLR 
approach are in general high. In an effort to obtain more efficient estimates, the ELR 
approach to consider the correlations among the indicator variables has been developed. 
We have also developed a generalized score tests for inferences based on the unified 
method, they provide fast tests for parallelism and other model selection hypotheses.

The SLR method can be implemented using conventional software. The SAS pro
cedure GENMOD can produce the SLR estimates and the covariance matrix of the 
parameter estimates as well with the option TYPE=IND in the REPEATED statement. 
The implementation of the binary coding and the generalized score tests require addi
tional work, though they are straightforward. Other software such as SUDAAN can also 
provide sandwich type covariance estimates.

Finally, we note that a potential use of our work is to provide a framework for modeling 
correlated ordinal data. Various correlation patterns can be incorporated by modeling 
the covariance between the indicator variables from the correlated observations. There 
are two main methods in the literature on measures of association between correlated 
ordinal data. Using the correlation coefficient as a measure of association. Miller, Davis 
and Landis(1993) have used the GEE method for proportional odds model. Williamson, 
Kim and Lipsitz (1995) and Heagerty and Zeger (1996) used the global odds ratios 
to measure the association. A promising direction for further research is to build a 
longitudinal GEE approach on the binary coding approaches of SLR and ELR.
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Chapter 3

Latent Structure Models for 

Correlated Ordinal Data

3.1 Introduction

Statistical methods appropriate for the analysis of longitudinal categorical data are not 
as well developed as their continuous counterparts. The models for longitudinal ordi
nal response data have studied by various researchers. There are three commonly used 
approaches for modeling longitudinal response variables: (1) marginal models address 
the average responses in sub-populations whose members share the common values of 
explanatory variables, and utilize various methodological strategies to account for the 
correlation between repeated measurements; (2) random effects models consider the nat
ural heterogeneity among subjects in a subset of the regression coefficients; (3) transi
tional models describe the probability distribution of a subject’s future events given the 
subject’s prior history. Diggle, Liang, and Zeger (1996) discussed existing methodologies 
for the analysis of discrete and continuous longitudinal data. In this chapter, we further 
develop the analysis of longitudinal ordinal outcomes through the latter two types of 
models, assuming a latent continuous structure.

In many situations it is reasonable to assume that the observed ordinal scale is a 
manifestation of a latent continuous variable partitioned by a set of unknown threshold
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values. We develop a general latent structure framework for the analysis of ordinal longi
tudinal data, in which the inferences we make about the regression parameters of primary 
interest recognize the likely correlation structure in the data. This approach is general 
and can often be given intuitive meaning. Closely related work includes Keenan (1982), 
who studied longitudinal binary data generated by an underlying continuous-valued time 
series, as well as Xie, Simpson and Carroll (2000), who discussed random effects model 
for clustered ordinal data and a Gibbs sampling approach to fit the regression model.

Another approach to analyzing clustered ordinal data is to use the generalized esti
mating equation (GEE) approach of Liang and Zeger (1986). Several researchers have 
proposed GEE approach for the analysis of clustered ordinal response data. (Clayton 
1992; Gange, Linton, Scott, and Klein 1993; Kim, Willamson, and Lipsitz 1993; Miller, 
Davis and Landis 1993, Heagerty and Zeger 1996; Simpson et al. 1996). For analyzing 
categorical time series. Liang and Zeger (1989) proposed a class of logistic regression 
models for multivariate binary time series. Hidden Markov models have been used to 
analyze discrete-valued time series (see for example MacDonald and Zucchini (1997)). 
Kitagawa (1987) studied non-Gaussian state space modeling of nonstationary time se
ries.

A common strategy, the E M  algorithm (Dempster, Laird, and Rubin 1977) is of
ten used for maximum likelihood estimation. One major difficulty lies in evaluation of 
the high dimensional integrals that may appear in the likelihood function. When the 
dimension is one or two, numerical integration techniques can be reasonably easy (e.g. 
Crouch and Spiegelman, 1990). For higher dimensional problems, Monte Carlo integra
tion methods can be used. See, for example, the applications of Gibbs sampling in Zeger 
and Karim (1991), and Xie, Simpson and Carroll (2000). An alternative strategy is to use 
conditional modes rather than conditional means in the score function. This approach 
has been used by Stiratelli, Laird, and Ware (1984) for logistic models with Gaussian 
random effects; Karim (1991), Schall (1991), and Breslow and Clayton (1993) for random 
effects generalized linear models (GLMs); and Lindstrom and Bates (1990) for non-linear 
regression models with Gaussian random effects and errors. In this article, we apply 
the Monte Carlo E M  (M C E M ) described in Tanner (1996) to get maximum likelihood 
estimates. The importance sampling technique is used to approximate the expectations 
in the E  step. Geweke (1989) has shown that the approximation converges to the true 
value almost surely. This method is easy to implement. The M-step is accomplished 
using the weighted least squares (WLS).
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The rest of the chapter is organized as follows: Section 2 introduces the general latent 
structure framework for longitudinal ordinal data. Section 3 discusses the FM-algorithm 
for parameter estimation. Section 4 applies our methodology to two examples. Section 
5  provides further comments and discussions.

3.2 Basic Framework

Let Zij be a sequence of continuous latent random variables on the i th of n subjects, 
and t{j,j =  L,. . . ,  m; be the corresponding times at which the measurements are taken. 
Suppose that we cannot observe Z,-y directly, instead we are only able to measure V]y, 
a sequence of ordinal variables, which classify Z,y into S  categories by a set of ordered 
thresholds —oo =  a0 < aq < • • • < Q5  = 0 0 , defined by

Yij — s, iff Zij £ (a ,_ i,a s|.

Associated with each \ ] j  is a vector, x,y, of p  explanatory variables. Given the continuous 
latent structure of Z,y, along with a set of thresholds points, an ordinal model for Y}j 
is obtained. Before we discuss models for correlated ordinal data, we first consider the 
independent latent structure model. Suppose that Z,y are independent of each other and 
follow a linear model

Zij =  jf3 -(- Gij

where the e,y are from a common distribution with CDF F(-). Then the corresponding 
ordinal model has the form

Pr(Y{j < s \ x ij) = F ( aa - x J jP ). (3.1)

If ejj follow a standard logistic distribution, then model (3.1) is a proportional odds model, 
and if e,-y are from a standard normal distribution, model (3.1) is a ordinal threshold probit 
regression model. In general, any monotone increasing function mapping (—0 0 , 0 0 ) onto 
the unit interval (0,1) can be used as F(-). Some other common candidates axe inverse 
log-Iog, inverse complementary Iog-log, and Cauchy functions.
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VVe now discuss two types of continuous latent structure: random effects models and 
Markov (autoregressive) models, and their respective ordinal models.

(a) Random effects models

When subjects are sampled at random from a population, various aspects of their 
behavior may show stochastic variation between subjects. For instance, some subjects 
are intrinsically high responders, others are low responders. One way to incorporate 
this feature in specific models is to allow some regression coefficients to vary from one 
individual to the next. Suppose the Zij follow a random effects model

= xjj[3 + wfjbi + e,j

where wtj is q x L vector of explanatory variables attached to individual measurements, 
and b =  (6 1, . . . , 6 ?)f is a vector of random coefficients. One simple case is the random 
intercept model, where =  I. Different intercepts for different individuals can be inter
preted as the different location parameters for the underlying continuous responses or the 
shifts of the thresholds for individuals, depending on the practical situation. For example, 
if the measurements are taken from different individuals by one investigator or using one 
instrument, it is appropriate to think of different intercepts as having different location 
parameters for different individuals; if the measurements are taken from one individual 
by several investigators or using different instruments, the second interpretation is more 
appropriate. Another case is when Xij = Wij, so that each individual can be thought 
to have their own regression coefficients. With a large number of observations for each 
subject, we could estimate their individual coefficients. But in practice, we have limited 
data and must borrow strength across subjects to make inferences on j3 or the 6 . This is 
accomplished by assuming that the 6 ,- are independent realizations from a distribution.

In the random effect models, we assume: (1 ) the distribution of each latent variable 
Z^ conditional on 6 ,- follows exponential family law with density f(z{j \ bi,[3); (2) given 
bi, Z a , . . . ,  Zimt are independent, so the repeated measurements Yu, . . . ,  Vfm> are condi
tionally independent; (3) the 6 ,- are independent and identically distributed with density 
function / ( 6 ,-; G). Therefore the ordinal model for Yij given b has the form

Pr(Yij < s  | bi,x ^ , w^) = F(a3 -  x j f i  -  wfjbi). (3.2)
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(b) Markov (autoregressive) models

When the time dependence is central, models for the conditional distribution of Y)j 
given Va,. . . ,  Yij-i  may be more appropriate. Correlation among Va,. . . ,  Y'im, exists 
because they inherit a certain structure from an underlying continuous process {Zij}. 
We will focus on the case where the observation times are equally spaced. The most 
useful transition models are Markov chains for which the conditional distribution of 
given its history depends only on the q prior observations. The integer q is referred to as 
the model order.

A qth-order autoregressive process can be written as

Zij =  Xijfl + 6 ij,

where
7

eij = 7rei,j—r 4*
r = l

and the are mutually independent mean-zero random variables. This is a Markov 
model of the form

7

Zij — x ijfi +  ^  7r{Zi,j—r — x iJ—rfl) 4* eij-
r = I

So, given . . . ,  the corresponding conditional ordinal model for Yt] is given

by

Pr(\\,  < s I Z y . ,  Z y -,)  =  F ( a . > ( Z y -  -  *& _^)). (34)
r = t

A general latent structure model is given by

ZH =  x JjP 4- wfjbi +  qi(tij) 4- (3.4)

where 6 ,- are a set of mutually independent Gaussian random vectors, and the qi(Uj) are 
realizations a stationary Gaussian process. The are “missing” data. We apply the 
Monte Carlo E M  approach for handling the missing data.
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3.3 Estimation: M C E M  Algorithm

The EM  algorithm (Dempster et al 1977) is a very general algorithm for ML estimation 
in missing data problems. The idea can be stated as follows: Augment the observed 
data with latent data so that the augmented distribution is “simple” More specifically 
the E M  algorithm is an iterative method for handling “missing” data: ( 1 ) E step finds 
the conditional expectation of the “missing” data given the observed data and current 
estimated parameters, then substitutes these expectations for the missing data. (2) M  
step performs maximum likelihood estimation as there were no “missing” data. The 
iterations continue until convergence. Since the computation of the expectations are 
difficult analytically, we apply the Monte Carlo E M  approach (Wei and Tanner 1990). 
The importance sampling idea is used to facilitate the E step.

In the M  step, we need to fit an independent latent structure model given the values 
for the latent variables. In order to fit a proportional odds model, we apply the binary 
coding of ordinal data discussed in Chapter 2. The ordinal response is represented as a 
vector of indicator variables

V* = (Y* V'*, ) T1 t j  \ r i j l i  • • • > U j S - l )

where Y*a =  1 if Y]j < s , and Y*JS =  0 if Y\j > s. This describes an ordinal response 
by a set of binary responses at each level, each indicating whether the ordinal response 
is above or below the level. This coding system is convenient for getting the likelihood 
equation, and its advantage becomes more clear in the context of censored ordinal data 
(Chapter 5).

(a) Random effects models

The log-likelihood function for the unknown parameter 9, which is defined to include 
a,/3, and the elements of G, given the complete data is

n  m i

l {9\Y,b)  =  £ 2 > g [p (K > A I 0 ) l
1=1 J=1 

n  m i

=  £  Y, l°g  [p(yo-16«-> 0 ) 1 + Iog[p(6«-10)1-
£=I i=l
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In the general E M  setting, the E-step consists of computing

Q{6,e>) =  jf((0 I V,6)p(6 I Y,0')db.

where 6l is the current parameter estimate in the Ith iteration. When applying the 
Monte Carlo method to approximate the integral, it is difficult to directly sample from 
p(bi | V], 0l). To facilitate the E-step, we apply the importance sampling technique. Note 
that the importance sampling method only requires that p(6 ,- | V;, 61) be known up to 
a proportionality constant. This observation is key, since we have avoided the need to 
standardize p(6 ,- | Yi,6l). We know that p(b{ | Yi,8l) oc p(Yi | 6 ,-, 9l)p(bi \ 0l), and p(6 ,- | 0l ) 

is easy to sample from. Therefore the method of importance sampling is as follows:

(i) Draw b\lK. . . ,b \R  ̂ from p(6 ,- | 9l);

(ii) Let „!*> =  Pr(V; =  j,. | i j V )  =  n £ .  Pr(Yu =  yh | ij*1,*');

, — \ r (fc) W / ^ K  (k)(ill) Let to] = v] 7 E fc= i^  •

(iv) Approximate

n  m ,  K

Q{0,6‘) «  ] T £ £ u / S fc){log[p(y,-., | b\k\  9)] + log[p(b\k) | 0)]}.
i=i j=t jt=i

Assume that b{ are independent Gaussian .'V(0, G), in the M-step we solve two sets 
of score equations for (a,/3) and G, which are given by

n  m i  K

s(q ./j)  =  E  -  F («  -  *10 -  » $ * ’)) =  o (3.5)
1=1 j=t k=l

S(G) = ^ G - l ( f ^ ^ a j ! k)b!k)b!k)T)G- 1 ~ ^ G ~ l = 0  (3.6)
t= l  k= 1

where Dij =  dF/d(a,(3), and Kj =  cov(V)y)- The first set of equations are the weighted 
likelihood equations of an independent latent structure model given the random coef
ficients, and the second set of equations are the weighted likelihood equations for a 
multivariate normal distribution. The algorithm proceeds by iteratively updating first 
the estimates of the regression coefficients and then the variance of the random effects, 
until the parameter estimates converge.
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The parameters a and (3 are of main interest, and G is considered a nuisance param
eter. Notice that (q,/3) is independent of G. We apply Louis (1982) method to estimate 
the covariance matrix of (oc, f3). Define

nlk =  u f 'D j K j 't y ;  -  F(a -  *10 -

and
m‘ K (r- u

m,/v — 1

The estimate for the information matrix of a and /? is given by

li = E E  {r‘,k f ‘Y w
j=l k= 1

a 2Q(«,«)var(a,p) = ---- -
d(a,j3y . -E4I .W (3-8)

8,0=6 i

d2Q{Q, <p) /  d{a, j3)2 is the information matrix for the complete data, which can be esti
mated using the standard algorithm for fitting proportional odds models.

(b) M arkov (autoregressive) m odels

Let e,j- =  (e,-tj _ t , . . .,  e;tj_7)r , The tog-likelihood function given the complete data is

n  m i

l ( 6 \ Y . e ) =  E E ' o s W t f i - * ! 9)]
i= i  j = i
n mi

= Y ,  X! l°g[P(yd I ea - ,0)] + log[p(e0-- | 0 )],
.=i j=i

where e =  (e,-,. . . ,  en)r , and e,- =  ( e a , . . . ,  e,m, )T. Similarly, we carry out the approxima
tion in the £-step as follows:

(i) Draw e-l\ . . . ,  from p(et-1 9l),

(ii) Let „!*» =  PrfX, = y, | «!*>,«<) = n S i  P r(Yu = Vi I < ! V ) ;

(iii) Let u,!‘> =  «!*’/  E L i u,W-

(iv) Approximate
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n  m i  K

~  Y1 t l  E  w!fc){l°sb(yij I e!fc,̂ ) l  +  logb (e!fc) I 0 )1}-
1 = 1  j = i  / t = i

In practice, assigning each simulated series one weights can converge very slowly. To 
increase the effectiveness of the Monte Carlo sample, we divide the simulated series into 
several sub-series, and calculated the weights for each sub-series. These weights reflect 
the local likelihood of the sub-series given the observed ordinal outcome and current 
parameter estimates. We use these weights for approximating Q(0,9l) as if there were 
several independent short series.

In the M-step, the estimating equations are given by

W ) \
Lj~r> = 0  

/
(3.9)

The score functions also consist of two sets of equations, one from a independent latent 
structure model given the latent continuous times series, the other from a autoregressive 
model of the latent variable given the observed discretization. This methodology can be 
readily extended to the estimation of the general structure model (3.4).

3.4 Examples

Example 1. Analysis of Ulcer Data

Uesaka and Asano (1987) described a randomized controlled clinical trial of three treat
ments for ulcer. Three drugs under study are randomly allocated to a number of patients. 
At each of three visits during the follow-up period, the response status of each patient 
Weis measured. Table 3.1 shows the classification of the percentages of the diameter of 
ulcer at 2, 4 and 6  weeks of administration period to those of the first examination. The 
three classes are 0 — 20%, 21 — 50%, and 51% — 100%, which are scored 1, 2 and 3, 
respectively. In the study many patients missed X-ray inspection at least one observa
tion period. When the ulcer had been sufficient small at one observation period, the
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subsequent measurements were often skipped. In this case, score 1 is given. As a result 
83 patients were available for the study.

To take into account the influence of heterogeneous individuals on the responses, we 
consider the cumulative logit random effects model

logitPr(Y'ijt < s \ b i ) = a 3 + 6 ,- +  0j + r ,.

where r t and r2 are the treatment effects of treatment Ai and A2 with the effect of .43 

as the baseline, 0i and 02 are the period effects of week 4 and week 6  respectively, and 
bi are mutually independent iV(0,<72). This model states that each patient has their own 
cumulative probability at a response level, Pr(Yijt <  s) given by exp(a, -f 6 ,- +  Jj -f 
rt)/ {1 + exp(as + bi +  + rt)}. It further states that a person’s odds at a response level
relative to treatment A3 are multiplied by exp(rt) when taking treatment At, t = 1.2, 
regardless of the initial risk.

A random intercept for each individual was imputed from the appropriate normal 
distribution with standard deviation taken as the current estimate of a1. Then we calcu
lated the likelihood u;,- of the observed outcome (t/u, i/,-2, tjis)1 given the current estimates of 
a[. ctl2, t[, 0[ ,0l2. The process is repeated to obtain K  augmented data sets. It follows
that in the M-step, we updated the estimates Qt/l+l,a 2+l?r i/+l’T2+l*^{+l*,̂ 2+l through a 
weighted proportional odds model, and cr/+l through weighted least squares estimation. 
It is usually inefficient to start with a large value of K  when the current estimates are far 
from the mode. Rather, one may increase K  as the current approximation moves closer 
to the true mode.

The algorithm was initiated with a t =  1.73, a 2 =  —0.175, r t =  0.829, r2 =  0.432. 
0i =  —2.81, 02 =  —4.02, cr =  1.00. These values except a  were obtained by fitting an 
independent model. The value of K  was equal to 50 (1000) for iterations 1 - 1 1  (12-15). 
Table 3.2 gives history of the Monte Carlo EM  algorithm. The convergence criterion is 
max# | 9l+l — 9l |<  0.01.

The results are given in Table 3.3-3.4. This analysis indicates the treatment At has 
the least effect on ulcer, A3 is the most effective treatment. In fact, treatment A3 is a 
mixture of Ai and A2 and has been expected to be most effective. And it is also known 
that ulcer tends to cure if life environment of the patient would be improved. Form the 
result we can see that the effect of time is highly significant.
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Table 3.1: Data from the study of Anti-ulcer drugs

DrugAi DrugAi DrugAz
No. 2w 4w 6 w 2w 4w 6 w 2w 4w 6 w

I 2 1 1 3 3 2 3 2 2
2 2 2  1 2  1 1 1 1 1

3 2 1 1 2  1 1 3 2 1

4 3 1 1 1 1 1 3 1 1
5 2 1 1 2  1 1 3 1 1
6 2 1 1 2  1 1 2  I 1

7 3 2  I I 1 1 3 I 1
S 2 1 1 3 1 1 1 1 1

9 3 3 3 2  2  1 3 1 1
10 3 2  1 2  I 1 3 I 1
11 3 2  1 3 1 1 2  I L
12 3 3 2 3 1 I 2  2  I
13 2 1 1 3 3 2 3 L 1
14 2 1 I 2  1 1 3 2 1

15 3 3 2 3 L 1 3 I I
16 2 1 1 3 2  1 1 1 1

17 3 1 3 2  I 1 1 1 1

18 3 1 1 2  1 1 3 1 1
19 3 1 1 3 2 I 1 1 1

2 0 3 2  2 3 2 I 2  1 1

2 1 3 1 1 2  1 1 2  1 1

2 2 3 2  1 2  1 1 3 1 1
23 3 2 1 2  1 1

24 3 1 1 3 3 1
25 2  1 1 3 1 1
26 3 1 1 2  2  1

27 3 1 1 2  2  1

28 2  1 1 2  1 1

29 3 3 2 3 2 1
30 3 2 2
31 3 3 2
32 3 1 1
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T able 3.2: History of MCEM for ulcer data

Iteration <*i a2 n T% 0 i 02 <T
L -1.705 0.214 -0.952 -0.501 2.846 4.094 1.037
2 -1.704 0.215 -0.950 -0.500 2.846 4.093 1 .0 2 1

3 -1.692 0.223 -0.935 -0.494 2.848 4.090 1.030
4 -1.718 0.224 -0.890 -0.496 2.843 4.074 1.098
5 -1.685 0.225 -0.950 -0.496 2.851 4.096 1.106
6 -1.718 0.224 -0.890 -0.496 2.843 4.073 1.133
7 -1.718 0.224 -0.890 -0.496 2.843 4.074 1.187
S -1.718 0.224 -0.890 -0.496 2.S43 4.074 1.241
9 -1.685 0.225 -0.949 -0.496 2.851 4.096 1.245
LO -1.685 0.225 -0.950 -0.496 2.851 4.096 1.275
11 -1.685 0.229 -0.949 -0.495 2.851 4.098 1.277
12 -1.677 0.229 -0.949 -0.495 2.853 4.097 1.283
13 -1.684 0.226 -0.949 -0.496 2.S51 4.097 1.287
14 -1.684 0.227 -0.949 -0.495 2.851 4.096 1.286
15 -1.683 0.226 -0.949 -0.496 2.854 4.096 1.287

Table 3.3: Estimates of treatment effects and their odds ratios

Effects Estimate sd p-value Odds ratio
-43 0 - - 1

.42 -0.496 0.353 0.149 0.609
At -0.949 0.372 0 .0 1 1 0.387

able 3.4: Estimates of period effects and their odds rati<

Effects Estimate sd p-value Odds ratio
2 nd week 0 - - 1

4th week 2.85 0.365 0 . 0 0 1 17.3
6 th week 4.10 0.443 0 . 0 0 1 60.3
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Figure 3.1: Maples Leafs’ regular season results in 1993- L994

E xam ple 2. Analysis of Toronto M aple Leafs gam es in 1993-1994 season

In the ordinal-valued time series case, the question of interest include: Is there serial 
dependence? Is a trend present? We consider the games of the Toronto Maple Leafs 
hockey team during the 1993-1994 season. The data are taken from Brillinger (1996), 
who recoded the data with two binary variables, “win” and “tie” and used a generalized 
linear model to analyze them separately. There were 84 regular season games, and the 
ordinal-valued time series, ?i, take values 0 ,1  and 2  corresponding to the results loss, tie. 
win, respectively. The results correspond to the state of the game after regulation time. 
Figure 3.1 provides a graph of the results. The Toronto team began the season with a 
record setting winning streak of 10 games, and the team had 28 losses, 17 ties and 39 
wins during the whole season.

Figure 3.2-3.3 provide smoothed estimates of the probability of a win and of a win or 
a tie respectively. The 95% confidence bands are also computed. The analysis is carried 
out as if the successive games axe independent. These curves were produced employing a 
regression spline technique to be discussed in Chapter 4. Except for the early wins, the 
estimated win and loss curves rapidly moved to constants.

46
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A basic question researchers usually pose when analyzing time series is the question 
of serial correlation: Does the result of the current game depend on its history? For 
time series of continuous variables, people usually summarize this dependence by the 
autocorrelation function (ACF) based on Pearson correlation, which describes the degree 
to which two dependent variables have a linear relationship. Ordinal variables do not 
have a defined metric, so the notion of linearity is not meaningful. However, the inher
ent ordering allows consideration of monotonicity, for instance, whether V't+i tends to 
increase as Yt does. We use Kendall’s tau analogously to the Pearson correlation in the 
autocorrelation function to describe the degree to which the relationship is monotone. 
Since the random variable Y  is derived from Z,  the correlation between Y] and K_i will 
inherit the relationship between Z,- and Z,_L. Although less sensitive, the ACF function 
of the categorized variables can still reflect the autocorrelation of the latent continuous 
variables. For instance, if the continuous latent variables are independent, the derived 
ordinal random variables will also be independent.

The values of Kendall’s tau from lag 0 to lag 10 are displayed in Figure 3.4. The 
autocorrelation at lag 0 is always I by definition. The horizontal dotted lines provide 
an approximate 95% confidence interval for the estimate of Kendall’s tau at each lag. 
If no estimated value falls outside the confidence band, there is no significant evidence 
to suggest that there is serial correlation. Otherwise one should be concerned about the 
presence of serial correlation. In our example the plot does not indicate any strong serial 
correlation.

We also consider a parametric model assuming a latent continuous-valued time series 
and a set of cutoff points:

Pr{Yi < s | Zi- i)  — F(as — jrZi-i),

and

Zi =  7 Zi-x -1- e,-.

The algorithm was initiated with an =  0.693, a-i =  —0.143, 7  =  0.1. These values 
except 7  were obtained by fitting an independence model without serial correlation. The 
whole sequence is divided into 8  subsequences. The value of K  was equal to 200 (3000)
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Figure 3.4: ACF using Kendall’s tau

Table 3.5: History of MCEM for maples data

Iteration an a2 7
L 0.693 -0.143 0.117
2 0.693 -0.143 0.081
3 0.693 -0.143 0.028
4 0.693 -0.143 0.025
5 0.693 -0.143 -0.016
6 0.693 -0.143 -0 . 0 2 2

7 0.693 -0.143 -0.013
8 0.693 -0.143 0 .0 0 0

9 0.693 -0.143 -0 . 0 1 2

1 0 0.693 -0.143 -0.013
11 0.693 -0.143 0.004
1 2 0.693 -0.143 -0.029
13 0.693 -0.143 -0.007
14 0.693 -0.143 0 .0 0 1

15 0.693 -0.143 0.013
16 0.693 -0.143 0.015
17 0.693 -0.143 0 . 0 1 2

18 0.693 -0.143 0.013
19 0.693 -0.143 0.013

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

for iterations 1-16 (17-19). The convergence criterion is max« | 6l+l—Bl |<  0.01. Table 3.5 
gives history of the Monte Carlo E M  algorithm. We notice that the rate of convergence 
is much slower for the autoregression parameter than that for the intercept parameters.

The 1993-1994 Toronto team began the season with a winning streak, however, ulti
mately the results of the various games appear to be random. The analyses provide no 
real evidence of serial correlation.

3.5 Discussion

The analysis of ordinal longitudinal data is difficult partly because few models for the 
joint distribution of the repeated observations for a subject are available. The methods we 
propose provide a way of modeling the joint distribution. The within subject correlations 
between the ordinal responses is modeled through a latent continuous variable. A nice 
feature for the latent structure model is that the parameters do not change if two or more 
contiguous levels are combined, and thus are insensitive to the arbitrary or subjective 
nature of the category partition. This approach also offers ease of interpretation.

For ordinal data, we lost the information of the relative scale between the categories, so 
we should be cautious when we treat the ordered categories as scores and use methods for 
continuous data. The latent structure models the underlying scale is estimated in terms 
a set of intercepts a ’s, which represent the set of cutpoints, along with the parameters 
of interests.

For fitting random effect GLM, an alternative strategy to approximate conditional 
means is to use conditional modes. This approximation method gives reasonable esti
mates of a , and (3 in many problems. The approximation breaks down when there are 
few observations per subject and the GLM is far from the Gaussian. Karim (1991) and 
Breslow and Clayton (1993) have evaluated this approximate method for some special 
random effects GLMs. Using the importance sampling method, we can approximate the 
conditional means directly, the accuracy increases as K  increases, and the approximation 
is independent of the form of the model. But this method requires more computational 
power, because each observation must be replaced by K  observations.

There are other methods for modeling ordinal time series. Diggle et ai. (1994) 
described a class of transitional models, in which a first order model can be expressed
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as log{Pr(Vj-j < s | Vij_i =  t)/Pr(Yij > s | Y;j-i =  t)} =  a st +  x'ijfit- The ordered 
categorical time series is treated as a Markov Chain. The transition matrix become more 
and more complicated when the number of categories or the order of the chain increases. 
For example, a saturated second order Markov Chain without covariates for an ordinal 
time series with 5 levels has a transition matrix with 53 — o2 parameters. The Latent 
structure model requires only 6  parameters, 4 cutpoints, 2  autoregression parameters. 
With latent structure models we can go beyond autoregressive models, Moving average 
(MA) models and other more complicated time series models can be formulated to analyze 
ordinal time series.

In some situations an ordinal response is not fully classified, the only information 
we know is that it lies in a set of contiguous categories. This is known as censoring. 
In chapter 5 we show how maximum likelihood estimates can be obtained using such 
partially classified observations.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Chapter 4

Multivariate Generalized Additive 

Models

4.1 Introduction

Regression is one of the most widely used of all statistical tools. Linear modeling in its 
widest sense is both well developed and and well understood, and there is in addition 
a variety of useful techniques for checking the assumptions involved. However, there 
are cases where such models cannot be applied because of intrinsic nonlinearity in the 
data. Non-parametric regression aims to provide a means of modeling such data. For the 
purpose of exploring data, smoothing techniques are useful by enhancing scatterplots to 
display the underlying structure of data, without reference to a parametric model. This 
can in turn lead to further useful suggestions of, or check on, appropriate parametric 
models. In this chapter, we introduce the use of non-parametric smoothing tools in 
the multinomial and ordinal data analysis problems, clustered data analysis problems, 
and longitudinal data analysis problems. The emphasis throughout is on using non- 
parametric techniques for exploration of data.

Generalized additive models were introduced by Hastie and Tibshirani (1984,1986). 
Their applications to logistic and proportional odds regression were discussed by Hastie 
and Tibshirani (1987, 1990). Yee and Wild (1996) proposed a class of vector generalized
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additive models for marginal means, in which the correlation structure is assumed known 
and only depends on the marginal means. In this chapter, we extend the GAMs to multi
variate data and propose a class of multivariate generalized additive models (MGAM), in 
which the components of a multivariate observation are correlated. Examples of models 
with this structure include multivariate linear regression, regression models for multivari
ate binary responses, and multinomial and ordinal regression models. MGAMs take into 
account the correlation between the components of a multivariate observation. In some 
applications, the correlation is only a function of the marginal means, while in other 
applications, the covariance matrix also depends on additional parameters. In MGAMs 
we model the correlation structure as well as the marginal means.

The penalized likelihood approach is used by Hastie and Tibshirani (1990) to fit 
generalized additive models. An alternative approach is regression splines. Regression 
splines are attractive because of their computational and statistical simplicity. For exam
ple, standard parametric inferential methods can be used to test the importance of any 
of the parameters, and standard procedures for fitting parametric models can be used. 
For fitting marginal means and the covariance structure, we use the maximum likelihood 
approach proposed by Zhao and Prentice (1990) for the “quadratic exponential family’’ If 
scientific interest is only in the marginal means as of a smooth function of the covariates. 
we apply the generalized estimating equation approach (GEE) proposed by Liang and 
Zeger (1986) to estimate the smooth function.

An important practical issue of using regression splines is that of “how many knots and 
where.” Since the optimal number of knots depends on the assumption of the smoothness, 
and this is unknown, choosing the knots based only on data is an important issue. By 
choosing the number and location of knots, a parametric model as an approximation for 
the mean function is obtained. This is basically a model selection procedure. We use 
information based criterion, such as AIC or SIC, or a model selection based procedure for 
knots selection. For continuous response data, the issue of knot selection was discussed 
in He and Shi (1996).

Section 2 introduces a class of multivariate additive models. In section 3 we discuss 
the regression spline method, with a maximum likelihood estimation approach and a 
GEE approach for multivariate regression. Section 4 discusses the knot selection issue in 
using regression splines. An example is given in section 5 to illustrate the methodology. 
Further discussion is provided in section 6 .
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4.2 M ultivariate Generalized Additive M odels

A generalized additive model (GAM) differs from a generalized linear model (GLM) in 
that an additive predictor replaces the linear predictor. Specifically, we assume that the 
response y has a distribution in the exponential family. The mean p. =  E (Y  | x t , . . . ,  xp) 
is linked to the predictor via

g{p) = a  + fi(xi) + • • • +  / p(*p).

where g is a known link function such as logit for binary response. With GAMs, instead 
of constraining the relationship between each x,- and g(p) to be linear as in GLMs, the 
relationship is merely constrained to be smooth. This allows non-linear features of the 
data to be revealed.

Let us consider the situation for which the response is vector instead of a scalar. 
Suppose that for the ith individual under study an S-dimensional response vector Y] = 
(Yu. . . . .  Y’isY and a />-dimensional covariate vector x are observed. Let /q =  (pu , . . . .  p is)' 
be the mean of Y  given x i , .. . ,x p. The multivariate GAM model is defined as

S t e )  =  *  +  £ / ; ( * « ) .  (4.1)
j=i

where a =  (a l? as)' is a vector of intercepts, and fj  = is a vector of
smooth functions. The marginal variance depends on the marginal mean according to

Var(Via) =  v(fiij)(t> (4.2)

where u(-) is a known variance function and 0  is a scale parameter that may require to
be estimated. The correlation between Y{s and Yu is a function of the marginal means
and perhaps of additional parameters 7 , i.e.

Corr(Vi5 , Yu) = p(fii3,fiitt‘y)i (4*3)

where p(-) is a known function.
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As discussed in Chapter 2, an ordinal response can be represented by a vector of 
binary variables. So we can treat an ordinal regression model as a multivariate binary 
regression model, usually with constraint on the smooth function The correlation 
between Y}s and Y\t is a function of only the marginal means. For example, an additive 
cumulative link model extended from a linear cumulative link model (1.4) is defined as

= a 3 - Y , f j ( z i j ) -
j=i

where F~l(-) is the link function, a  is a set of cutpoints, fii3 = Pr(Oi < s j r j ,  and 0, is 
the ordinal outcome of the zth individual. The smooth function fj  satisfies f j 3 = f j t = .
Letting Y]s =  /(O, < s), the covariance between Y{s and Yu is given by

n i v  v  \ I ~  Pa)]* ^  .Corr( V,'3, Yu) — r .11 if * <  i.
[(I

In longitudinal studies. The observations within each subject are correlated. In this 
case, the correlation between Y]3 and Yu usually does not depend only on the marginal 
means. Additional parameters are needed for describing the covariance structure. For 
example, a marginal repeated measurement model of this kind with uniform correlation 
structure is given by the following assumptions:

(i) g(Pij) =  a  -  £ i= i

(ii) Var(Via) =

(iii) Corr(V;s,V h )= 7,

where g(-) is identity link for multivariate general regression models assuming Gaussian 
errors, and logit link for multivariate logistic models.
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4.3 Regression Splines, Quadratic Exponential Fam

ily, and GEE

Regression splines represent the fit as a piecewise polynomial. The regions that define the 
pieces are separated by a sequence of knots. In addition, it is forced that the piecewise 
polynomial to join smoothly at these knots. Regression splines define a set of basis 
functions which are piecewise polynomials centered at the knots. B-spline basis functions 
are a common choice. Given knots and order of the splines, we can construct linearly 
independent B-spline basis function, denoted by Bk(x). Every spline f (x )  in the space 
spanned by {j3fc(;r)} then has a unique representation

/(* ) =  B(x)%

where B(x) is the vector of B-spline basis functions representing the particular family of 
piecewise polynomials, evaluated at the observed values of the predictor x. The smooth 
function is estimated by a multiple regression on B(x). So, given knots and order of the 
splines, the estimation of the spline function can be formulated as a parametric problem 
of estimating f3. There are several efficient algorithms to generate the B-spline basis 
function for a given set of knots. We use function spline.des in S-plus for generating the 
B-spline design matrix B(x).

The joint distribution of the Yj can be expressed in the log-linear specification, which 
assumes the pdf of Yj is of the form

f{yiA>7i) =  exp{%- -f- i-Wi -  A(0 ,-,7 ,)} (4.4)

where Wi =  (YaYj2, • - •, Yj,s_iYjs, • YaYj2 • • • YisY is a (25  — S — L) x I vector of two and 
hig-way cross products of Vj, 0 ; =  (0 a , . . . , 0,s)', and 7 =  (7 a 2, •. • ,7 «\5 -i.s, • • •, 1U2..jsY 
are vectors of canonical parameters, and .4.(0,-, 7 ,) is a normalizing constant. Zhao and 
Prentice (1990) proposed a likelihood based approach that is based on the “quadratic 
exponential family” with the three- and high-way association parameters set to zero. 
When these parameters are set to zero, 4.4 holds with W, =  (Yu Vj-2, - - -, Yjsj', 
0£ =  (0,i,-• - ,0«s)/, and H — (7 ,12,• — , 7 is-i,s),‘ Zhao and Prentice (1990) propose to 
model the mean fii, and the covariance of the response as a function of covariates by
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some specified link function. Using this approach, given a set of knots and the order of 
the spline function, the set of likelihood equations for (3 and 7  have the following form

Vi K; Vi -  Hi

hi  Ui j
=  0 (4.5)

where Sist =  {Yi3 -  n is){Yu -  Hu), <?ist = E{Sist), A', =  cov{Yi, 5,-), and U, = cov(Si). The 
equations given in (4.5) yield maximum likelihood estimates when the true three- and 
high-way association parameters are zero. A serious drawback of this approach, however, 
is that consistency of /? and 7  requires the correct specification of the model for both the 
mean and the pairwise marginal correlations, namely, (3 may fail to be consistent when 
the model for the marginal association is misspecified even if the model for the mean is 
correct.

An alternative approach is to use the GEE approach proposed by Liang and Zeger
(1986). They derived two set of estimating equations for [3 and 7  separately.

sw) = '£DliVr'(yi-»<)=o- ( « )
;=i

and
S(7 ) =  £ 4 B - l( s ,-< r ,)= 0 . (4.7)

i-l

where D{ =  dfj.i/d/3', .4,- =  dvijd7 ', and Vi and Bi axe the “working” covariance matrices 
of Vi and 5;, respectively. One major attractive feature of the GEE approach is that 
it provides a consistent estimate, /3, that only requires that the model for the marginal
means are correctly specified. Regardless of whether the “working” correlations are
correctly specified, consistent estimates of the regression parameters are obtained.

4.4 Knot Selection

The degree of smoothness of the true regression function determines how well the function 
can be approximated. In practice the degree of smoothness of the true regression function 
is unknown and has to be pre-determined by specific consideration or by examination of
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the data. Piecewise linear, quadratic, and cubic splines are common in practice. They 
avoid the oscillation problem often associated with higher order polynomials, and provide 
considerable flexibility.

Given a set of potential knots, we use the AIC function proposed by Akaike (1973) 
to select knots for low values of

A I C 0 )  = D ( y J )  + ' ^
n

Where D{y;/3) is the Deviance, p is the dimensionality of the approximating model. 
Another information criterion in favor of parsimonious model is the SIC function (Schwarz 
(1978)), in which one minimizes

S l C 0 )  = D ( y J )  +

Alternatively we can use a simple model selection procedure such as forward, backward, 
or stepwise procedure for knot selection. Cross validation is another approach adopted 
by some researchers (Burman 1990, and He and Shi 1996). Simulation study by He and 
Shi (1996) showed that the information-based criteria generally perform a little better 
than cross validation for knot selection.

When the true function does not change dramatically, uniform knots are usually 
sufficient. The uniform knots here refer to having about equal number of observations 
between two contiguous knots. In our experience, starting from a set of uniform knots 
and using a stepwise model selection procedure works well for ordinal regression models, 
such as proportional odds models.

4.5 An Example

Figure 4 . 1  shows the number of occurrences of rainfall, Yi, over 1 mm in Tokyo for each 
day during the two yeaxs (1983-1984). The problem is to estimate the probability of 
occurrence of rainfall. For the purpose of exploring the data, we use a proportional odds 
model with regression splines to fit the data. The model for the smoothed probability of
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Figure 4.1: Number of rainfall occurrence in Tokyo, L9S3-19S4

number of occurrence is given by

logit{Pr(V;- > 5 )} =  as + / ( f t), 5 =  1,2.

VVe use a stepwise model selection procedure; the set of 12 potential knots is chosen at 
the beginning of each month. Figures 4.2 and 4.3 display the estimated probabilities of 
rainfall on either day (Y] > 1) and of rainfalls on both days (VI > 2). The model is fitted 
as if the observations of successive days are independent. The dashed curves bound the 
95% marginal confidence band. As mentioned before, one advantage of regression splines 
is that standard parametric inferential methods can be used to test statistical hypothesis. 
We used the score test defined in Chapter 2 to test the proportional odds assumption. 
The x 2 test statistic is 7.79 with 4 degrees of freedom, and the p-value is 0.10.

Although the assumption of independence is not really statistical sound, the fitted 
curve can illustrate the gradual change of rainfall occurrence with season. Kitagawa
(1987) used a state-space modeling approach to analyze this data set.
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Figure 4.2: Estimated probability of rainfall
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Figure 4.3: Estimated probability of rainfall occurred more than once
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4.6 Discussion

In many situations, the additive extensions to GLMs provided by GAMs are invaluable 
for exploring data. This chapter proposes a further extension of this methodology to a 
multivariate setting in a natural way. The MGAMs have broad applicability for multi
nomial and ordinal data, where a response can be viewed as a vector of binary response, 
and for clustered and longitudinal data, where the observations for each subject are cor
related. They can be used in a data analytic fashion to model and to test hypothesis 
about covariates. A more conservative approach is to use the non-parametric functions 
to suggest parametric transformations, and then proceed with the usual linear analysis 
on the transformed variables.

Regression splines provide a computationally convenient way of fitting additive mod
els. When the knots are given, standard linear model estimation can be applied. However, 
the difficulty of choosing the number and location of the knots is a drawback of this ap
proach. Information-based criteria or standard model selection procedures are applied in 
helping to select knots.

When dealing with more than one covariate, the backfitting algorithm discussed in 
Hastie and Tibshirani (1990) can be extended to MGAMs. It is an iterative algorithm 
for computing all / j ,  based on the fact that E(Y — a — Ej^k f j i xj) I x k) =  fk (x k) if the 
MG AM (4.1) is correct. When the additivity assumption does not hold, a more general 
approach is to use multivaxiate splines, He and Shi (1996) discussed the use of bivariate 
tensor-product B-splines in a partly linear model.
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Chapter 5

Censored data

5.1 Introduction

This chapter concerns the analysis of data when some of the values are not completely 
observed. Regression analysis is used to identify the relationship between the response 
variable and a set of covariates. A complicating phenomenon is censoring, where only 
partial information about the response is available. For example, in some toxicology 
studies the response is classified into several severity levels, such as no observable effect, 
mild effect, severe effect, and death, but in some circumstances part of the responses 
may be only recorded as either live or death, with the exact response levei unknown. In 
some clinical settings, survival times are not observed directly. Instead, at intermittent 
examination times, it is determined whether or not the outcome has occurred or the 
observation has been censored. In such settings it is only known that the survival time 
is bracketed by the examination times immediately preceding and immediately following 
it. In the first example, the response variable is categorical, and in the second example 
the response is continuous. Data of this kind axe termed interval censored data.

Relatively little has been published on the interval censored categorical data, partic
ularly when a parametric regression model is assumed. Simpson et al (1996) discussed 
maximum likelihood estimation of ordinal regression in the presence of interval censoring. 
They derived the general form of the likelihood function subject to interval censoring. 
Related estimation problems for partially classified multinomial observations have been

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

studied by various authors, including Hartley (1958), Koch, Imrey, and Reinfurt (1972), 
Chen and Feinberg (1976), and Shipp, Howe, Watson, and Hogg (1991).

In survival analysis, when the data consist of the exact values and the right cen
sored values, several parametric and non-parametric methods are available (Lawless 1982. 
Kalbfleisch and Prentice 1980). Interval censoring is another mechanism of censoring 
where the exact time of event is unknown; however the event is known to occur between 
two defined time points. Odell, Anderson, and D’Agostino (1992) applied a Weibull-based 
accelerated failure time model for interval censored data. They compared the maximum 
likelihood estimates for observed data with the method of substituting midpoints for in
terval censored data. The simulation studies indicate that for relatively large samples the 
maximum likelihood estimator is superior to the midpoint estimator, depending on the 
percentage of censored data. Kim (1997) used a loglinear model to incorporate interval 
censored failure times, assuming that the base line hazard is a step function on disjoint 
time intervals.

The EM  algorithm, introduced in Dempster, Laird, and Rubin (1977) is a very gen
eral iterative algorithm for ML estimation in incomplete-data problems. For analyzing 
interval-censored data, the censored data are treated as “missing."’ We augment the fully 
observed data with “missing” censored data to simplify computations in the analysis. 
Tanner (1996) discussed the EM  algorithm for simple linear regression with right cen
sored data. In the case of censored regression data with normal errors, this approach 
reduces to an iterated series of least squares computations to estimate the regression 
coefficients. Kim (1997) discussed using the EM  algorithm in fitting loglinear model 
with interval censored data. By augmenting the data, we replace the complicated anal
ysis required in the observed data approach by a series of simple analyses. The main 
advantages of the E M  algorithm are its generality and stability and, given a method to 
analyze complete data, its ease of implementation.

Although the E M  algorithm is a general method for dealing with censored data, it 
has two major drawbacks, its typically slow rate of convergence, and its lack of the direct 
provision of a measure of precision for the estimator. There are more efficient algorithms 
for fitting some particular models. Agresti (1990) described a class of cumulative link 
models, which model the cumulative probabilities of the response via a strictly monotone 
function F~l from (0,1) on the real line. For this type of model we derive a closed form
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for the score function, and apply a weighted least squares algorithm to get parameter 
estimates.

In this chapter, we discuss the applications of EM  algorithm for ML estimation in 
the analysis of interval-censored categorical and continuous response data. Section 3.L 
introduces the E M  algorithm for dealing with interval censored categorical data. Section
3.2 proposes a weighted least squares algorithm for fitting cumulative link models. Section 
4 discusses the continuous response variable case. Section 5 gives further comments and 
discussion.

5.2 Censoring

Let Y] be a discrete or continuous random variable with probability cumulative function 
F or density function / ,  Y] is said to be censored in set C,-, if the only information we have 
about Vj is that Y] lies in Ct. For continuous variables, C-, usually is an interval (C'ta. C',*,], 
which can take ±oo as its boundary value. For example, two examinations at particular 
times to see whether a certain event has yet occurred will produce a censored observation 
of the time of occurrence of that event. Whether the observation is left-censored, right 
censored or interval censored depends on whether the event happened before the first 
examination, after the second examination or between two examinations. We make these 
distinction because the statistical methods are substantially different for the three types 
of censoring. For categorical responses, often referred as partially classified data, we 
do not make this distinction because of the limited response categories, or the lack of 
ordering for nominal data.

Assume missing at random defined in Little and Rubin (1987). likelihood inferences 
of censored data can ignore the stochastic nature of the censoring and treat observed 
data as if they were simple grouped data, for which the grouping is predetermined and 
non-stochastic. The likelihood for Yi is

L(6 | Yi) = Pr(Yi €  Ci) =  £  P< Yi  =
tec,
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if \] is categorical, and

L (6 \Y i) = Pr(Yi € C i)=  f f( t)d t ,Jc,

if Yi is continuous.

5.3 M ethods for Censored Categorical Responses

In the presence of censoring, usually the form of the likelihood functions is complicated, 
and computationally difficult to maximize directly. A general approach is to treat the 
interval censored observations as missing data, and use the EM  algorithm to obtain the 
maximum likelihood estimates. Cumulative link models is a class of models for ordinal 
data, the likelihood function has a closed form. The weighted least square algorithm is 
derived for solving the score functions.

5.3.1 E M  algorithm, a General Approach

Suppose we record the data so that the first m observations, denote by i /i , . . . ,i /m, are 

uncensored, and the remaining n —m observations, denoted by zm + . . . ,  zn, are censored, 

where r,- £ C,. For ordinal response data, Z, is often classified into fewer levels by 

collapsing contiguous categories. Let p(9 | Y, Z) denote the likelihood on completed data 

set, where Y  represents the fully observed data, C represents the censored intervals, and 

Z  represents the latent data; Let /(*/;) denote the loglikelihood of and p(Z | 9J, Y. C) 

denote the conditional predictive distribution of the latent data Z, conditional on the 

current estimates of the parameters. The E-step consists of computing

Q{9,9i) =  /  log[p(0 | Z, Y)}p(Z | 9 \  Y , C)dZJz
m n. .

=  £ % •-> +  £  i{Zi)p(z( \p ,Y ,C i)d z  (5.i)
t'= l t'= m + l JZ
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The conditional predictive distribution p(Z,- | 9J, Y) is the conditional binomial or multi

nomial distribution, conditional on the fact that the unobserved response level Zi is in 

C , .  Hence

f  i(zi)p(zi \ e \ Y , c i)dz =  E{nZi)\0i,ZieCi)
J  Z

=  Y i  Pr(Zi = ti \P ,Z i e C i) l{ t i)
t.6 C ,

=  Y ,  wit. Ifc)
t .6C ,

where wu, =  Pr(Z{ =  £,■ \ 93, Zi €  C i )  =  Pr( Z[ =  £,■ | 0J) / Pr( Zi 6  Ci \ 9J) are the weights 

associated with the possible values of Z, respectively. Therefore, Q{9.0J) is given by

m  n

Q (e,P) = £ ((» ,-)+  Y .  '('■•) (-5-2)
t= l  i= m + l t, gC,

In the M-step, the Q function is maximized with respect to 9 to obtain 93+l. Notice 

that the M-step is simply a weighted regression on the augmented data. The missing 

value Zi is replaced by with all the possible values from c,a to ca along with their weights. 

The algorithm is iterated until ||0J+l— 93\\ or | Q{93Jri,93) —Q(93,93) \ is sufficiently small.

The EM  algorithm is very attractive because of its simplicity. We can use standard 

software to facilitate the M-step. For example, the SAS procedures LOGISTIC and PRO

BIT provide ML fitting of proportional odds and threshold probit models, respectively. 

We have shown that a continuation ratio model can be fitted using only ordinary logistic 

regression procedure. As for the adjacent category model, it is known that we can express 

adjacent category logit models as baseline category logit models (see Agresti 1990, page 

318), which can be fitted directly using SAS procedure CATMOD. In the E-step, only 

the weights need to be calculated. Usually, the E-step is easy to implement and the cost 

of computation is much lighter than that of the M-step.

The output of the E M  algorithm, 9, is the maximum likelihood estimates. To get 

the covariance estimates of 9, one must compute the Hessian matrix of logp(0 | Y).

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

For missing data problems, Louis (1982) stated the Missing Information Principle as 

following:

Observed Information =  Complete Information - Missing Information.

A basic result due to Louis (1982) expresses the principle in the following form

d2logp(0 | V') d2Q(0,cf>)
662 802

— var
<i>=6

f dlog p{8 | YZ)  
1 36

where the variance is with respect to p(Z | O.Y). The complete information 

—d2Q{0,4>)ld02 is the complete information matrix obtained directly from the regression 

output at the final iteration for the augmented data. The missing information matrix is 

given by

var
f d logp(fl | Y, Z)
I M

= var
i=m+L

A  fa /(Si) i  
=  2^ var 

i=m+1

do

do (5.3)

The information matrix of the observed data at the maximum likelihood estimate j3 

can be estimated via

d2Q(8,<p) n
. - x

f

E  wi*i
(dl(ti) y _ f E  Witi

d m VI{ do . I do -6,tt>=6 i= m + l t.ec, 6=6 / \ t . € C , 6=6}
(5.4)

d o 2

where are the weights calculated from the last iteration.

Example L  Continuation ratio models

As discussed in Chapter 1, we can obtain the maximum likelihood estimates for a 
continuation ratio model via fitting a simultaneous logistic regression on the recoded
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binary data, defined as

Y* =*■ IS
1 if Yi =  s 

0 otherwise
and Wf. =

1 if Y i< s

0 otherwise s = 1 . . . . .  5'.

The likelihood, l(yi), is of form

K'T.O'SiogtfS) +  (1 -  ^ ) io g ( i  -  Pi)}

The M-step is accomplished by a standard logistic regression procedure.

5.3.2 Weighted Least Squares for Cumulative Link Models

Agresti (1990) presented a generalization of the proportional odds model that permits a 
variety of transformations for modeling ordinal response data. Let F denote the CDF of 
a continuous random variable having positive density over the entire real line. The F~l, 
so called link function, is a strictly monotone function from (0,1) onto the real line. The 
cumulative link model has the form

F~l{P r(Y  < s | x)} = a3 — x'(3,

or, equivalently
Pr{Y < s \ x )  = F ( a ,- x '0 ) .  (5.5)

This model assumes that effects of x are the same for each cutpoint. This assumption 
holds if there is a linear regression for an underlying continuous response having stan
dardized CDF F. McCullagh (1980) discussed several cumulative link models. The logit 
link, F~l(u) =  log[u/(l — u)], gives the proportional odds models. The standard normal 
CDF F  =  $  gives the threshold probit models, a generalization of the binary probit 
model to ordinal data. The complementary log-log link, F~l(u) = log[—log(l — u)] is 
appropriate when the underlying distribution follows an exponential or extreme-value 
distribution. The ordinal model using this link is called a proportional hazard model,
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because of the property

I -  P r(Y  < s \ x l) = [ l - P r { Y  < s \  x2)]**pK**-*‘)'/J1

Proportional odds models and threshold probit models provide similar fits. The 
complementary log-log link, log[—log(l — u)] is similar to the logit or probit for small u, 
but tends to oc much more slowly for large values.

Having yi censored into the interval {cm, . . . .  c,*,} can be viewed as collapsing the 
response into fewer levels. The response Z, follows a conditional multinomial distribution, 
but the multinomial cells may differ for different observations, both respect to the number 
of available intervals as well as the interval boundaries. We use two sets of indicator 
variables to represent a censored response. Assume that cta < (/; < c,*,, we define

Y *  =1 IS
I if Cib < s 

0 otherwise
and Ut =

1 if Cib < s or Cia > s 

0 otherwise

The U'3 can be viewed as an indicator variable, which specifies whether the information 
contained in ?•* is censored. The information contained in the censored ordinal response. 
Y i ,  is only translated into . . . ,  . . . ,  Y £ ,  and by collapsing contiguous lev
els, the parameters values do not change. Therefore intuitively, we only need to used 
those indicator variables without censoring.

Theorem 1 the likelihood equation for the cumulative link model in the presence of cen
soring can be written as

(•5.6)
t=l

where Dij = dF/d{a,f3), =  cov{Y^), U* =  diagiU-i , . . . , U*s^ ) ,  Fi = (Fa , . . . ,  FiS- i )T,
and Fu = Pr(Y£ =  1).
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Proof: Let V'5 =  0, =  1, FlQ =  0, and F,s =  1. without censoring, the log-likelihood
of Yi can be written as

l(Yi) =  -  v3) M R - h  -  R.).
3=0

By the theory of generalized linear model, the likelihood equation is given by

t , Df vr l( y ' - F i )  =  o.
i= I

Now let U*0 =  I, U*s =  1. In the presence of censoring, i.e. c,a < yi < cib. the loglikelihood 
of Vi can be written as

'(>;) = E(v;*+,
3=0

+ £(*•;:,+ , -  o i  -  ĉ + . o m b i  -  -  r . h
3=0 3=0

=  ‘£ ( v ; * +, -  o  iog(FIJ+1 -  f„) +  £  ( o +. -  v;:> -  # u
3=0 3=C,j,

+(*'£„ -  v;rc>0-i) log(Fic,fc -  Fi,Cto_t).

Therefore the loglikelihood equations have the form

£  o f  0 ( 5 ?  -  R) =  o, (5.7)
i=L

where yf =  (yfl ,...,J /i,Cto- i , ^ ifc, . . . ,y r5)Tr A =  (F i, - • -, F.c.-a-n F1Ci6, . . . .  Fl5)r r K =
cov(Vi), and £>, =  dFi/dB.  It is easy to see that (5.7) is the same as (5.6). This completes
the proof.

For the random effects and autoregressive latent structure model we discussed in 
Chapter 3, the score function for the M  step can be obtained by replacing the first set 
of equations with (5.6). For continuation ratio models and adjacent category model, this 
approach is not applicable, because there is not a underlying continuous latent structure 
for these two types of models.
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5.4 M ethods for Censored Continuous Responses

Let us first consider regression model on completely observed continuous data. Suppose 
that continuous measurements from n subjects, denoted by Yj, , . . . ,  , are available,
and -Y,- is a p-dimensional covariate associated with the ith object. Suppose that Yj- is 
related to the covariates .Y,- through a linear regression: for a p-dimensional regression 
coefficient /?,

V;=.Y'/? +  e„

where e, are independent and identically distributed residuals. Denote the distribution 
function of the residuals by F, and its density by / .  We assume that the form of the 
distribution is known. For example, with normal distributed residuals, we have the 
general linear models. If the Yj are exponential or Weibull, we have accelerated failure 
time models.

In the censored case, among the n observations, Yj, Yj,. . . ,  Ym are observed com
pletely, Zm+i,Zm+2,- - - ,Z n are only partially observed. We only know that Z, is in the 
interval Cm + 1 =  (cta, c,-*], where c,a and c,-& can be ± 0 0 . We assume that the censoring 
distribution does not involve the unknown parameter 8. The likelihood of the entire 
sample is

ni3\ y,o  = f i n v i - x i f i )  n  -  W )  -  nci.  -  .v,'/))]
i= l  i= m + I

"L JL rcib-X'p
=  n / ( w - * w  n  /  w w w  (-5-s )

i=L i= m + t a ~

where Y  = [Y i,.. . ,Y m)r, and C =  (Cm+i ,  Cn). The likelihood on the complete data
has a simpler form

L(fi\Y,Z) = f l f ( y i -X' i0) f[ f t e - W )
1=1 «=m+l

In the E-step, we need to calculate

M M S) = /  log/(u -  X[t3)f(zi | P,  Y,C,)izi
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where

' ’ ’ ”  Pr(zt- €  C,-| i#) 7

03 is the current estimate of 0  in the iteration, and /  is the indicator function. When 
the predictive density f(z i \ 00  Y, C i )  is easy to sample, we can draw a random sample 
r tL, . . . ,  directly, and approximate J0 0 .0 3) by

A '*.,

When we cannot directly sample from f{z{ \ 00 Y. C,). we apply the method of impor
tance sampling to approximate J-00,00 as

(i) draw ztl,  from d{(z),

(ii) = E & , » » lo g /(* »  -  .*?/?)]/££,, m

where dj(z) is a density that is easy to sample from, and iua. =  f(z i \ 0J. K, Ct)/£/,(-,*). 
Geweke (1989) has shown that if the support of d,(z) includes the support of f(z i  | 
03. Y, Ci), the z,k's are independent identically distributed from d{(z), and J0 0 .0 J) exists 
and is finite, then

Ji(0,03) ^  .0(0,00  a.s.

The first condition is sensible, for if the support of d,-(c) is strictly contained in the 
support of f{zi | 00 Y, C’i), then there is no hope of generating deviates in the complement 
of the support of d,(s). The rate of convergence depends on how closely d{(z) mimics 
f(z{ | 00Y ,C i). As noted by Geweke (1989), it is important that the tails of d,(r) do 
not decay faster that the tails of f(z i  | 0 0Y \C 0 . For interval censored data, where both 
C{a and Co, are finite, one choice for d,(r) is the uniform distribution between c,a and c,&. 
The support of d{(z) naturally contains the support of /(r,- | 0J, Y, C,), and d,(r) is flat 
over the interval (cia,Cib), so almost sure convergence is guaranteed. For left or right 
censored data, we can use a truncated continuous distribution, such as a normal or t 
distribution, as our choice for d{(z) instead of a uniform distribution. We recomend to 
use a distribution with heavy tail to improve the rate of convergence.

If d{(z) poorly approximates f(z i  | 00  Y, C,-), the standard error of Ji(0 ,0 0  is inflated, 
i.e., the effective Monte Caxlo sample size is decreased. In the EM  algorithm, the M-step 
is computationally expensive, and often there is limit on how much data software can
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handle. So increasing the effectiveness of the Monte Carlo sample is very important in 
practice. An improved version of importance sampling can be implemented as following

(i) Draw zjv  . . . ,  z-K, from

(ii) Draw z n , . . . ,  c,/v- from the sample z*v . . . ,  z*Kir with weight Wik on zjk,

(iii) Mi3,iP) =  1 /A 'r L i  log/(«4 -  ■<!/*)■

The sample ztl, . • • , - . a :  is an independent identically distributed sample from 
f(zi | Si.Y .C i). Smith and Gelfand (1992) showed that the approximation improves 
as Iv * increases. Q(j3.f3J) is approximated by

j z  E ^ i o g / ( - - . t - x y i  (5 .9 )
1 = 1  ( = 771+1 k = l

The M-step is a weighted regression on the augmented data. The Monte Carlo EM  al
gorithm is iterated until convergence. The observed information matrix can be estimated 
by

Example 2. Mean and Variance

In many situations with interval censored data, especially in rounding, the data are 
presented as the centers of the grouped sets. For univariate data, mean and variance 
can be estimated using those center values, the statistics are referred as simple mean X*  

and simple variance s*2. Heitjan (1989) summarized two main conclusions. First, the 
simple mean X*  is a good estimate of fi =  E X ,  and s* / \ /n  is a good summary of the 
uncertainty about fi in X*.  Second, s*2 is not a good estimate of a 2 — var(X), but can 
be improved by a correction.

Assuming normality, we can draw from truncated normal distributions to fill in the 
censored data. The maximum likelihood estimates for p. and a2 axe obtained by calcu-
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lating the weighted sample mean and sample variance using the complete data when the 
E M  algorithm reaches convergence.

Example 3. Life tables

The life table is a summary of the survival data grouped into convenient intervals. Ln 
some applications (e.g. actuarial), the data are often collected in such a a grouped form. 
For example, the data are grouped into intervals C t , . . . ,  C£,,such that C t =  ( q _ i ,  cj] with 
c0 =  0 and cl = oo. The life table contains the number of failures and censored survival 
times falling in each interval.

Suppose that log Y, the logarithm of survival time V', is related to the covariate X  
via a linear model Y  = X'f3 + e, where e is an error variable with known density / .  There 
are standard estimation procedures for accelerated failure time models with complete 
and right censored data (see for example Kalbfleisch and Prentice (L980), Chapter 3). 
The method discussed in this section provides a way of fitting an accelerated failure time 
model with data from a life table where interval censoring is inherently present.

5.5 Discussion

VVe propose a general method to obtain maximum likelihood estimates when interval 
censoring is present. Our main goal is to introduce a simple estimating method for the 
regression parameters. This method can be applied to both categorical and continuous 
responses.

Other numerical maximization techniques, such as Newton-Raphson algorithm used 
by Odell et al. 1992 can also be used to deal with maximizing the observed likelihood 
function. The likelihood contribution for a interval censored case involves integration of 
the density function over C,-, in which case the first and second derivatives of log-Iikelihood 
axe quite complicated. If p is large, the Newton-Raphson algorithm requires calculation 
and inversion of a high dimensional matrix of second derivative. Divergence is quite 
frequent, especially when the matrix is close to singular. We use the E M  and M C E M  
algorithms in which interval censored responses axe treated as missing data. The M-step 
is simply a regression on the augmented data which can be accomplished with standard 
software to facilitate the M-step. The implementation of E-step is straightforward.
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[n this chapter, our focus is on fitting parametric models with censored data. There 
are also non-parametric and semi-parametric approaches in analyzing censored data. 
Turnbull (1974) proposed a version of EM  for non-parametric maximum likelihood es
timation of a distribution function. Finkelstein (1986) proposed a proportional hazard 
model for interval censored failure time data.
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